# Package ‘textir’

August 29, 2016

**Title**  Inverse Regression for Text Analysis  
**Version**  2.0-4  
**Author**  Matt Taddy <taddy@chicagobooth.edu>  
**Depends**  R (>= 2.15), distrom, gamlr, Matrix, stats, graphics  
**Suggests**  MASS  
**Description**  Multinomial [inverse] regression inference for text documents and associated attributes. Provides fast sparse multinomial logistic regression for phrase counts. A minimalist partial least squares routine is also included. Note that the topic modeling capability of textir is now a separate package, maptpx.  
**Maintainer**  Matt Taddy <taddy@chicagobooth.edu>  
**License**  GPL-3  
**URL**  [http://faculty.chicagobooth.edu/matt.taddy/index.html](http://faculty.chicagobooth.edu/matt.taddy/index.html)  
**NeedsCompilation**  no  
**Repository**  CRAN  
**Date/Publication**  2015-08-19 00:31:04

## R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>congress109</td>
<td>2</td>
</tr>
<tr>
<td>corr</td>
<td>3</td>
</tr>
<tr>
<td>mnlm</td>
<td>4</td>
</tr>
<tr>
<td>pls</td>
<td>6</td>
</tr>
<tr>
<td>tfidf</td>
<td>9</td>
</tr>
<tr>
<td>we8there</td>
<td>10</td>
</tr>
</tbody>
</table>

**Index**  12
Ideology in Political Speeches

Description

Phrase counts and ideology scores by speaker for members of the 109th US congress.

Details

This data originally appear in Gentzkow and Shapiro (GS; 2010) and considers text of the 2005 Congressional Record, containing all speeches in that year for members of the United States House and Senate. In particular, GS record the number times each of 529 legislators used terms in a list of 1000 phrases (i.e., each document is a year of transcripts for a single speaker). Associated sentiments are repshare – the two-party vote-share from each speaker’s constituency (congressional district for representatives; state for senators) obtained by George W. Bush in the 2004 presidential election – and the speaker’s first and second common-score values (from http://voteview.com). Full parsing and sentiment details are in Taddy (2013; Section 2.1).

Value

congress109Counts

A dgCMatrix of phrase counts indexed by speaker-rows and phrase-columns.

congress109Ideology

A data.frame containing the associated repshare and common scores [cs1,cs2], as well as speaker characteristics: party (‘R’epublican, ‘D’emocrat, or ‘I’ndependent), state, and chamber (‘H’ouse or ‘S’enate).

Author(s)

Matt Taddy, <taddy@chicagobooth.edu>

References


See Also

mnlm, pls, dmr, we8there
Examples

data(congress109)

## Bivariate sentiment factors (roll-call vote common scores)
covars <- data.frame(gop=congress109Ideology$party=="R",
cscore=congress109Ideology$cs1)
covars$cscore <- covars$gop*covars$cscore -
tapply(covars$cscore,covars$gop,mean)[covars$gop+1]
rownames(covars) <- rownames(congress109Ideology)

## cl=NULL implies a serial run.
## To use a parallel library fork cluster,
## uncomment the relevant lines below.
## Forking is unix only; use PSDK for windows
cl <- NULL
# cl <- makeCluster(detectCores(), type="FORK")
fitCS <- mnlm(cl, covars, congress109Counts, bins=5, gamma=1)
# stopCluster(cl)

## plot the fit
par(mfrow=c(1,2))
for(j in c("estate.tax","death.tax")){
  plot(fitCS[[j]], col=c("red","green"))
  mtext(j, line=2)
}
legend("topright", by="n", fill=c("red","green"), legend=names(covars),

## plot the IR sufficient reduction space
Z <- srproj(fitCS, congress109Counts)
par(mfrow=c(1,1))
plot(Z, pch=21, bg=c(4,3,2)[congress109Ideology$party], main="SR projections")
## two pols
Z[c(68,388),]

---

corr  

2nd moments of sparse matrices

Description

Correlation and deviation in sparse matrices.

Usage

corr(x, y)
sdev(x)

Arguments

x  A dgCMatrix or matrix of counts.
y  A matrix with nrow(y)=nrow(x).
Value

corr returns the ncol(x) by ncol(y) matrix of correlation between x and y, and sdev returns the column standard deviations.

Author(s)

Matt Taddy <taddy@chicagobooth.edu>

See Also

pls, congress109

Examples

# some congress examples
data(congress109)
r <- corr(congress109Counts, congress109Ideology$repshare)
## 20 terms for Democrats
sort(r[,]')[1:20]
## 20 terms for Republicans
sort(r[,1], decreasing=TRUE)[1:20]
## 20 high variance terms
colnames(congress109Counts)[
order(-sdev(congress109Counts))[1:20]]

---

mnlm  Multinomial Inverse Regression (MNIR)

Description

Estimation of high dimensional multinomial logistic regression models and the corresponding MNIR sufficient reduction projections.

Usage

mnlm(cl, covars, counts, mu=NULL, bins=NULL, verb=0, ...)
srproj(obj, counts, dir=1:K, ...)

Arguments

c1  A parallel library socket cluster. See the same argument in help(dmr) for details.
covars  A dense matrix or sparse Matrix of covariates. This should not include the intercept. See the same argument in help(dmr) for details.
**mnlm**

**counts**
A dense matrix or sparse `Matrix` of response counts (e.g., token counts in text mining). See the same argument in `help(dmr)` for details. For `srproj`, this must have the same number of columns as the response dimensions (vocabulary size) in `obj`.

**mu**
Pre-specified fixed effects for each observation in the Poisson regression linear equation. See the same argument in `help(dmr)` for details.

**bins**
Number of bins into which we will attempt to collapse each column of `covars`. `bins=NULL` does no collapsing. See the same argument in `help(dmr)` for details.

**verb**
Whether to print some info. See the same argument in `help(dmr)` for details.

**obj**
Either a `dmr` object, as returned from `mnlm`, or the `dmrcoef` object obtained by calling `coef` on the output of `mnlm`. The latter will be faster, since `coef.dmr` is called inside `srproj` otherwise.

**dir**
The attribute (covar) dimensions onto which you want to project. The default is all dimensions: `1:K`, where `K` is the number of columns in the `covars` argument to `mnlm`.

... Additional arguments to `gamlr` from `dmr` (via `mnlm`), and to `coef.dmr` from `srproj`. See `help(gamlr)` and `help(dmr)` for details.

**Details**

These functions provide the first two steps of multinomial inverse regression (see MNIR paper).

`mnlm` fits multinomial logistic regression parameters under gamma lasso penalization on a factorized Poisson likelihood. The `mnlm` function is just a simple wrapper of the `dmr` function of the `distrom` library (see DMR paper), which itself relies upon the `gamlr` library (see GL paper). For model selection, coefficients, prediction, and plotting see the relevant functions in `help(dmr)`.

`srproj` calculates the MNIR Sufficient Reduction projection from text counts on to the attribute dimensions of interest (`covars` in `mnlm`). In particular, for counts `C`, with row sums `m`, and `mnlm` coefficients `φ_j` corresponding to attribute `j`, `z_j = C'φ_j/m` is the SR projection in the direction of `j`. The MNIR paper explains how `V = [v_1...v_K]`, your original covariates/attributes, are independent of text counts `C` given SR projections `Z = [z_1...z_K]`.

The final step of MNIR is ‘forward regression’ for any element of `V` onto `Z` and the remaining elements of `V`. We do not provide a function for this because you are free to use whatever you want; see the MNIR and DMR papers for linear, logistic, and random forest forward regression examples.

Note that if you were previously using `textir` and `dmr` not for inverse regression, but rather just as fast code for multinomial logistic regression, you probably want to work directly with the `gamlr` (binary response) or `dmr` (multinomial response) packages.

**Value**

`mnlm` returns a `dmr` s3 object. See `help(dmr)` for details.

`sprojsj` returns a matrix with columns corresponding to directions `dir`, plus an additional column `m` holding the row totals of counts.
Author(s)  
Matt Taddy <taddy@chicagobooth.edu>

References  

See Also  
congress109, we8there, dmr

Examples  

```r  
### Ripley's Cushing Data; see help(Cushings) ###  
library(MASS)  
data(Cushings)  
Cushings[,1:2] <- log(Cushings[,1:2])  
train <- Cushings[Cushings$Type != "u",]  
newdata <- as.matrix(Cushings[Cushings$Type == "u", 1:2])  

# fit, coefficients, predict, and plot  
fit <- mnlm(NULL, covars=train[,1:2], counts=factor(train$Type))  

# dmr applies corrected AICc selection by default  
round(coef(fit),1)  
round(predict(fit, newdata, type="response"),1)  
par(mfrow=c(1,3))  
for(j in c("a","b","c")){  
  plot(fit[[j]]); mtext(j,line=2)  
}
```

## See we8there and congress109 for MNIR and srproj examples
**Usage**

```r
pls(x, y, K=1, scale=TRUE, verb=TRUE)
```

```
## S3 method for class 'pls'
predict( object, newdata, type="response", ... )
```

```
## S3 method for class 'pls'
summary( object, ... )
```

```
## S3 method for class 'pls'
print(x, ... )
```

```
## S3 method for class 'pls'
plot(x, K=NULL, xlab="response", ylab=NULL, ...)
```

**Arguments**

- **x** The covariate matrix, in either `dgCMatrix` or `matrix` format. For `plot` and `print`: a `pls` output object.
- **y** The response vector.
- **K** The number of desired PLS directions. In plotting, this can be a vector of directions to draw, otherwise directions 1 to K are plotted.
- **scale** An indicator for whether to scale x; usually a good idea. If scale=TRUE, model is fit with x scaled to have variance-one columns.
- **verb** Whether or not to print a small progress script.
- **object** For `predict` and `summary`: a `pls` output object.
- **newdata** For `predict`, an `ncol(x)`-column matrix of new observations. Can be either a `simple matrix` or a `simple_triplet_matrix`.
- **type** For `predict`, a choice between output types: predictions scaled to the original response for "response", fitted partial least squares directions for "reduction".
- **xlab** For `plot`, the x-axis label.
- **ylab** For `plot`, the y-axis label. If null, will be set to 'pls(k) fitted values' for each k.
- **...** Additional arguments.

**Details**

`pls` fits the Partial Least Squares algorithm described in Taddy (2012; Appendix A.1). In particular, we obtain loadings `loadings[,k]` as the correlation between X and factors `factors[,k]`, where `factors[,1]` is initialized at `scale(as.numeric(y))` and subsequent factors are orthogonal to to the k'th pls direction, an ortho-normal transformation of `x%*%loadings[,k].`

`predict.pls` returns predictions from the object$fw$mod forward regression $\alpha + \beta * z$ for projections $z = x*loadings - shift$ derived from new covariates, or if type="reduction" it just returns these projections. `summary.pls` prints dimension details and a quick summary of the corresponding forward regression. `plot.pls` draws response versus fitted values for least-squares fit onto the K pls directions.
Value

Output from pls is a list with the following entries

- \(y\)  The response vector.
- \(x\)  The unchanged covariate matrix.
- directions  The pls directions: \(x \times \text{loadings} - \text{shift}\).
- loadings  The pls loadings.
- shift  Shift applied after projection to center the PLS directions.
- fitted  \(k\) columns of fitted \(y\) values for each number of directions.
- fwdmod  The \(\text{lm}\) object from forward regression \(\text{lm}(\text{as.numeric}(y) \sim \text{directions})\).

\(\text{predict.pls}\) outputs either a vector of predicted response or an \(\text{nrow(newcounts)}\) by \(\text{ncol(object}\$\text{loadings})\) matrix of pls directions for each new observation. Summary and plot produce return nothing.

Author(s)

Matt Taddy <taddy@chicagobooth.edu>

References


See Also

normalize, sdev, corr, congress109

Examples

data(congress109)
x <- t(t(congress109Counts)/rowSums(congress109Counts))
summary(fit <- pls(x, congress109Ideology$repshare, K=3))
plot(fit, pch=21, bg=432)[congress109Ideology$party]
predict(fit, newdata=x[c(68,388),])
**Description**

term frequency, inverse document frequency

**Usage**

tfidf(x, normalize=TRUE)

**Arguments**

- `x` A dgCMatrix or matrix of counts.
- `normalize` Whether to normalize term frequency by document totals.

**Value**

A matrix of the same type as `x`, with values replaced by the tf-idf

\[ f_{ij} \times \log\left(n/(d_j + 1)\right), \]

where \( f_{ij} \) is \( x_{ij}/m_i \) or \( x_{ij} \), depending on `normalize`, and \( d_j \) is the number of documents containing token \( j \).

**Author(s)**

Matt Taddy <taddy@chicagobooth.edu>

**See Also**

pls, we8there

**Examples**

data(we8there)
## 20 high-variance tf-idf terms
colnames(we8thereCounts)[
  order(-sdev(tfidf(we8thereCounts)))[1:20]]
**On-Line Restaurant Reviews**

**Description**

Counts for 2804 bigrams in 6175 restaurant reviews from the site www.we8there.com.

**Details**

The short user-submitted reviews are accompanied by a five-star rating on four specific aspects of restaurant quality - food, service, value, and atmosphere - as well as the overall experience. The reviews originally appear in Maua and Cozman (2009), and the parsing details behind these specific counts are in Taddy (MNIR; 2013).

**Value**

- `we8thereCounts` A `dgCMatrix` of phrase counts indexed by review-rows and bigram-columns.
- `we8thereRatings` A matrix containing the associated review ratings.

**Author(s)**

Matt Taddy, <taddy@chicagobooth.edu>

**References**


Taddy (2013), *Distributed Multinomial Regression*.

**See Also**

dmr, mnlm

**Examples**

```r
## some multinomial inverse regression
data(we8there)

## we'll regress counts onto 5-star overall rating

c <- NULL
# c <- makeCluster(detectCores(), type="FORK")
```

---

**Note:** The examples shown are meant to illustrate how the data might be used. Actual applications should consider the specific needs and constraints of the project.
```r
## small nlambda for a fast example
fits <- mnlm(cl, we8thereRatings[, 'Overall'], drop=FALSE,
we8thereCounts, bins=5, gamma=1, nlambda=10)
# stopCluster(cl)

## plot fits for a few individual terms
terms <- c("first date", "chicken wing",
"ate here", "good food",
"food fabul", "terribl servic")
par(mfrow=c(3,2))
for(j in terms){
  plot(fits[[j]]); mtext(j, font=2, line=2)
}

## extract coefficients
B <- coef(fits)
mean(B[2,]==0) # sparsity in loadings
## some big loadings in IR
B[2,order(B[2,])[1:10]]
B[2,order(-B[2,])[1:10]]

## do MNIR projection onto factors
z <- srproj(B, we8thereCounts)

## fit a fwd model to the factors
summary(fwd <- lm(we8thereRatings$Overall ~ z))

## truncate the fwd predictions to our known range
fwd$fitted[fwd$fitted<1] <- 1
fwd$fitted[fwd$fitted>5] <- 5
## plot the fitted rating by true rating
par(mfrow=c(1,1))
plot(fwd$fitted ~ factor(we8thereRatings$Overall),
varwidth=TRUE, col="lightslategrey")
```
Index

congress109, 2
congress109Counts (congress109), 2
congress109Ideology (congress109), 2
corr, 3

mnlm, 4

plot.pls (pls), 6
pls, 6
predict.pls (pls), 6
print.pls (pls), 6

sdev (corr), 3
srproj (mnlm), 4
summary.pls (pls), 6

tfidf, 9

we8there, 10
we8thereCounts (we8there), 10
we8thereRatings (we8there), 10