Package ‘subscore’

April 13, 2019

Title Computing Subscores in Classical Test Theory and Item Response Theory

Version 3.1

Author Shenghai Dai [aut, cre], Xiaolin Wang [aut], Dubravka Svetina [aut]

Maintainer Shenghai Dai <s.dai@wsu.edu>

Description Functions for computing subscores for a test using different methods in both classical test theory (CTT) and item response theory (IRT). This package enables three sets of subscore methods within the framework of CTT and IRT: Wainer’s augmentation method, Haberman’s three subscore methods, and Yen’s objective performance index (OPI). The package also includes the function to compute Proportional Reduction of Mean Squared Errors (PRMSEs) in Haberman’s methods which are used to examine whether test subscores are of added value.

Depends R (>= 3.4.0), CTT, stats, irtoys, sirt, ltm

Imports cocor, boot

NeedsCompilation no

Encoding UTF-8

LazyData true

License GPL (>= 2)

RoxygenNote 6.1.1

Repository CRAN

Date/Publication 2019-04-12 22:13:55 UTC

R topics documented:

 CTTsub ... 2
 data.prep .. 4
 scored.data .. 5
 subscore.corr .. 7
 subscore.s .. 8
This main function estimates true subscores using different methods based on original CTT scores.

Description

This function estimates true subscores using methods introduced in studies of Haberman (2008) <doi: 10.3102/1076998607302636> and Wainer et al. (2001). Hypothesis tests (i.e., Olkin’Z, Williams's t, and Hedges-Olkin's Z) are used to determine whether a subscore or an augmented subscore has added value. Codes for the hypothesis tests are from Sinharay (2019) <doi:10.3102/1076998618788862>.

Usage

CTTsub(test.data, method = "Haberman")

Arguments

test.data A list that contains item responses of all subtests and the total test, which can be obtained using function 'data.prep'.

Value

summary Summary of estimated subscores (e.g., mean, sd).

PRMSE (a) PRMSE values of estimated subscores (for Haberman’s methods only).(b) Decisions on whether subscores have added value - added.value.s (or added.value.sx) = 1 means subscore.s (or subscore.sx) has added value, and added.value.s (or added.value.sx) = 0 vice versa.

#'

PRMSE.test All information in PRMSE plus results of hypothesis testing based on Sinharay (2019) <doi:10.3102/1076998618788862>.

subscore.original Original subscores and total score.

estimated.subscores Subscores computed using selected method. Three sets of subscores will be returned if method = "Haberman".
References

Examples

Transfering original scored data to a list format
that can be used in other functions.
test.data<-data prep(scored.data,c(3,15,15,20),
c("Algebra","Geometry","Measurement", "Math"))

Estimating subscores using Haberman’s methods
CTTsub(test.data,method="Haberman") # Estimating subscores using Haberman's methods

Obtaining original correlation for the three methods
CTTsub(test.data,method="Haberman")$Correlation

Obtaining disattenuated correlation for the three methods
CTTsub(test.data,method="Haberman")$Disattenuated.correlation

Obtaining PRMSEs for the three methods
CTTsub(test.data,method="Haberman")$PRMSE

Obtaining descriptive statistics summary for estimated subscores
CTTsub(test.data,method="Haberman")$summary

Obtaining raw subscores
CTTsub(test.data,method="Haberman")$subscore.original

Obtaining subscores that are estimated as a function of the observed subscores
CTTsub(test.data,method="Haberman")$subscore.s

Obtaining subscores that are estimated as a function of the observed total score
CTTsub(test.data,method="Haberman")$subscore.x

Obtaining subscores that are estimated as a function of both the observed subscores and the observed total score.
CTTsub(test.data,method="Haberman")$subscore sx

Estimating subscores using Wainer’s method
CTTsub(test.data,method="Wainer")

Obtaining descriptive statistics summary for subscores
CTTsub(test.data,method="Wainer")$summary
Obtaining original subscores

CTTsub(test.data, method="Wainer")$subscore.original

Obtaining subscores that are estimated using Wainer’s augmentation method

CTTsub(test.data, method="Wainer")$subscore.augmented

data.prep

This function prepares data into a required list format

Description

This function generates a list of datasets using the scored original dataset, which can be used as objects in subscore computing functions.

Usage

```r
data.prep(scored.data, subtest.infor, subtest.names = NULL)
```

Arguments

- **scored.data**: Original scored dataset with rows as individuals and columns as items.
- **subtest.infor**: A numerical vector. The first number indicates the number of subtests, followed by numbers of items on each subscale.
- **subtest.names**: Names of the subscales AND the total test. The default is NULL. If not provided, names of "subtest.1, subtest.2, etc." will be assigned.

Value

A list that contains subscale responses and the total test response.

Examples

```r
subtest.infor<-c(3,15,15,20)
subtest.names<-c("Algebra","Geometry","Measurement","Math")
# This math test consists of 3 subtests, which have 15 algebra
# items, 15 geometry items, and 20 measurement items.
test.data<-data.prep(scored.data, subtest.infor, subtest.names)
```
Sample scored data

Description

This dataset contains responses of 150 examinees to three subscales. These subscales consist of 15, 15, and 20 items respectively.

Usage

```r
data("scored.data")
```

Format

A data frame with 150 observations on the following 50 variables.

V1	Item 1
V2	Item 2
V3	Item 3
V4	Item 4
V5	Item 5
V6	Item 6
V7	Item 7
V8	Item 8
V9	Item 9
V10	Item 10
V11	Item 11
V12	Item 12
V13	Item 13
V14	Item 14
V15	Item 15
V16	Item 16
V17	Item 17
V18	Item 18
V19	Item 19
V20	Item 20
V21	Item 21
V22	Item 22
V23	Item 23
V24	Item 24
Details

A dataset containing responses of 150 examinees to a total number of 50 items on three subscales (15, 15, 20 items respectively).

Examples

```r
# read data
data(scored.data)
## maybe str(scored.data); plot(scored.data) ...
Computing correlation indices for subscores and the total score.

Description

This function computes Cronback’s Alpha and Stratified Alpha. Disattenuated correlations are also provided.

Usage

subscore.corr(test.data)

Arguments

test.data A list that contains subscale responses and the total test responses. It can be obtained using the function `data.prep`.

Value

summary Summary of obtained subscores (e.g., mean, sd).
correlation Correlation indices as indicated above.

References


Examples

# Transfering scored response data to the required list format
test.data <- data.prep(scored.data,c(3,15,15,28),
c("Algebra","Geometry","Measurement", "Math"))

# Estimate true subscores using Hamerman’s method based on observed subscores
subscore.corr(test.data)

subscore.s(test.data)$summary
subscore.s(test.data)$correlation
subscore.s  Computing subscores using Haberman's method based on observed subscores.

Description

This function estimates true subscores based on observed subscores, using the method introduced by Haberman (2008) <doi:10.3102/1076998607302636>.

Usage

subscore.s(test.data)

Arguments

test.data  A list that contains subscale responses and the total test responses. It can be obtained using the function `data.prep`.

Value

summary  Summary of obtained subscores (e.g., mean, sd).
PRMSE  PRMSEs of obtained subscores (for Haberman’s methods only).
subscore.original  Original subscores and total score.
subscore.s  Subscores that are estimated based on the observed subscore.

References


Examples

# Transfering scored response data to the required list format
test.data <- data.prep(scored.data, c(3, 15, 15, 20),
  c("Algebra", "Geometry", "Measurement", "Math"))

# Estimate true subscores using Haberman's method based on observed subscores
subscore.s(test.data)

subscore.s(test.data)$summary
subscore.s(test.data)$Correlation
subscore.s(test.data)$Disattenuated.correlation
subscore.s(test.data)$PRMSE
subscore.s(test.data)$subscore.s
subscore.sx  Computing subscores using Haberman's method based on both observed total scores and observed subscores.

Description
This function estimate true subscores based on both observed total scores and observed subscores using the method introduced by Haberman (2008) <doi:10.3102/1076998607302636>.

Usage
subscore.sx(test.data)

Arguments
test.data A list that contains subscale responses and the total test responses. It can be obtained using the function 'data.prep'.

Value
summary Summary of obtained subscores (e.g., mean, sd).
PRMSE PRMSEs of obtained subscores (for Haberman’s methods only).
subscore.original Original observed subscores and total score.
subscore.sx Subscores that are estimated based on both the observed total score and observed subscore.

References

Examples
test.data<-data.prep(scored.data,c(3,15,15,20),
c(“Algebra”, ”Geometry”, ”Measurement”, ”Math”))

subscore.sx(test.data)
subscore.s(test.data)$Correlation
subscore.s(test.data)$Disattenuated.correlation
subscore.sx(test.data)$summary
subscore.sx(test.data)$PRMSE
subscore.sx(test.data)$subscore.sx
Estimating true subscores using Wainer’s augmentation method

Description

This function estimates subscores using Wainer’s augmentation method (Wainer et. al., 2001). The central idea of this procedure is that, the estimation of subscores will be improved by shrinking the individual observed subscores towards some aggregate values (i.e., group mean subscores). The extent of the shrinkage depends on the closeness of the subscale being estimated with other subscales as well as reliabilities of all the subscales. Wainer’s augmentation is a multivariate version of Kelly’s formula (Kelly, 1947). For details of Wainer’s augmentation subscoring method, please refer to Wainer et al. (2001).

Usage

subscore.Wainer(test.data)

Arguments

test.data A list that contains datasets of all subtests and the total test, which can be obtained using function 'data.prep'.

Value

summary It contains statistical summary of the augmented subscores (mean, sd, and reliability).

Augmented.subscores It contains augmented subscores that are obtained using Wainer’s method.

References


Examples

test.data<-data.prep(scored.data,c(3,15,15,20),
c("Algebra","Geometry","Measurement", "Math"))

subscore.Wainer(test.data)

subscore.Wainer(test.data)$summary
subscore.Wainer(test.data)$subscore.augmented
subscore.x

Computing subscores using Haberman’s method based on observed total scores.

Description

This function estimates true subscores based on observed total scores using the method introduced by Haberman (2008) <doi:10.3102/1076998607302636>.

Usage

subscore.x(test.data)

Arguments

test.data A list that contains subscale responses and the total test responses. It can be obtained using the function ‘data.prep’.

Value

summary Summary of obtained subscores (e.g., mean, sd).
PRMSE PRMSEs of obtained subscores (for Haberman’s methods only).
subscore.original Original observed subscores and total score.
subscore.x Subscores that are estimated based on the observed total score.

References


Examples

test.data<-data.prep(scored.data,c(3,15,15,20),
c(“Algebra”,”Geometry”, “Measurement”, “Math”))

subscore.x(test.data)

subscore.x(test.data)$summary
subscore.x(test.data)$PRMSE
subscore.x(test.data)$Correlation
subscore.x(test.data)$Disattenuated.correlation
subscore.x(test.data)$subscore.x
test.data  

A list of objects that include both test information and subscores.

Description

This list consists of four objects. The first three objects are item responses on the three subscales (algebra, geometry, and measurement). The fourth object is the response data on the total test.

Usage

data("test.data")

Format

The format is: List of 4 $ Algebra : 'data.frame': 150 obs. of 15 variables.  
$ Geometry : 'data.frame': 150 obs. of 15 variables.
$ Measurement : 'data.frame': 150 obs. of 20 variables.
$ Math : 'data.frame': 150 obs. of 50 variables.

Details

Algebra : Responses of 150 participants to 15 items; Geometry: Responses of 150 participants to 15 items. Measurement: Responses of 150 participants to 20 items; Math: Responses of 150 participants to 20 items.

TIMSS11G8M.data  
The 2011 TIMSS Grade 8 Mathematics Assessment Dataset

Description

The TIMSS dataset used in Dai, Svetina, and Wang (2017) (doi:10.3102/1076998617716462). It contained responses from 765 students to 32 items with 6 to 9 items on each of the subscales of (1) number (Q1 to Q9), (2) algebra (Q10 to Q18), (3) geometry (Q19 to Q24), and (4) data and chance (Q25 to Q30). Omitted responses were treated as incorrect.

Usage

data("TIMSS11G8M.data")
**Format**

A data frame with 765 observations on the following 32 variables.

- Q1 a numeric vector
- Q2 a numeric vector
- Q3 a numeric vector
- Q4 a numeric vector
- Q5 a numeric vector
- Q6 a numeric vector
- Q7 a numeric vector
- Q8 a numeric vector
- Q9 a numeric vector
- Q10 a numeric vector
- Q11 a numeric vector
- Q12 a numeric vector
- Q13 a numeric vector
- Q14 a numeric vector
- Q15 a numeric vector
- Q16 a numeric vector
- Q17 a numeric vector
- Q18 a numeric vector
- Q19 a numeric vector
- Q20 a numeric vector
- Q21 a numeric vector
- Q22 a numeric vector
- Q23 a numeric vector
- Q24 a numeric vector
- Q25 a numeric vector
- Q26 a numeric vector
- Q27 a numeric vector
- Q28 a numeric vector
- Q29 a numeric vector
- Q30 a numeric vector
- Q31 a numeric vector
- Q32 a numeric vector

**Source**

Examples
data(TIMSS11G8M.data)

Yen.OPI  Estimating true subscores using Yen's OPI

Description
This function estimates subscores using Yen's Objective Performance Index (OPI; Yen, 1987). Yen's OPI (Yen, 1987) is a procedure combining Bayesian method and item response theory (IRT; Embretson & Reise, 2000; Reckase, 1997). This method pulls an examinee's performance on a certain objective (i.e., subscale) towards his/her total test performance in order to get a more stable and precise objective subscore estimate.

Usage
Yen.OPI(test.data)

Arguments
test.data  A list that contains datasets of all subtests and the total test, which can be obtained using function 'data.prep'.

Value
summary  It contains statistical summary of OPI (mean & sd).
OPI  Estimated OPI values

References

Examples
test.data<-data.prep(scored.data,c(3,15,15,20),
c("Algebra","Geometry","Measurement","Math"))

Yen.OPI(test.data)

Yen.OPI(test.data)$summary
Yen.OPI(test.data)$OPI
Yen.Q3

Computing Yen’s Q3 statistic for unidimensional Rasch, 1-, 2-, and 3-PL logistic IRT models

Description

This function calculates Yen’s Q3 statistics (Yen, 1984; 1993) for unidimensional Rasch, 1-, 2-, and 3-PL logistic IRT models to assess the local independence assumption.

Usage

Yen.Q3(scored.data, IRT.model = "2pl")

Arguments

scored.data  Item response data with rows as individuals and columns as items.
IRT.model   IRT model (‘Rasch’, ‘1pl’, ‘2pl’, or ‘3pl’) to be used. The default option is 2pl.

Value

Q3          A matrix of Q3 statistics
Q3.weighted A matrix of Q3 statistics as obtained by weighting the residual values to reflect the number of examinees with each response pattern.

References


Examples

Yen.Q3(scored.data, IRT.model="2pl")

Yen.Q3(scored.data)$Q3
Yen.Q3(scored.data)$Q3.weighted
Index

*Topic datasets
  scored.data, 5
  test.data, 12
  TIMSS11GBM.data, 12

CTTsub, 2

data.prep, 4

scored.data, 5
subscore.corr, 7
subscore.s, 8
subscore.sx, 9
subscore.Wainer, 10
subscore.x, 11

test.data, 12
TIMSS11GBM.data, 12

Yen.OPI, 14
Yen.Q3, 15