Package ‘stepPlr’

February 20, 2015

Version 0.92
Date 2009-12-17
Title L2 penalized logistic regression with a stepwise variable selection
Author Mee Young Park, Trevor Hastie
Maintainer Mee Young Park <meeyoung@google.com>
Depends R (>= 2.0)
Description L2 penalized logistic regression for both continuous and discrete predictors, with forward stagewise/forward stepwise variable selection procedure.
License GPL (>= 2)
Repository CRAN
Date/Publication 2010-07-26 13:59:19
NeedsCompilation yes

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cv.step.plr</td>
<td>Computes cross-validated deviance or prediction errors for step.plr</td>
</tr>
</tbody>
</table>

Description

This function computes cross-validated deviance or prediction errors for step.plr. The parameters that can be cross-validated are lambda and cp.
Usage

```
cv.step.plr(x, y, weights = rep(1, length(y)),
        nfold = 5, folds = NULL, lambda = c(1e-4, 1e-2, 1),
        cp = c("aic", "bic"), cv.type=c("deviance", "class"),
        trace = TRUE, ...)
```

Arguments

- `x`: matrix of features
- `y`: binary response
- `weights`: optional vector of weights for observations
- `nfold`: number of folds to be used in cross-validation. Default is `nfold=5`.
- `folds`: list of cross-validation folds. Its length must be `nfold`. If `NULL`, the folds are randomly generated.
- `lambda`: vector of the candidate values for `lambda` in `step.plr`
- `cp`: vector of the candidate values for `cp` in `step.plr`
- `cv.type`: If `cv.type=deviance`, cross-validated deviances are returned. If `cv.type=class`, cross-validated prediction errors are returned.
- `trace`: If `TRUE`, the steps are printed out.
- `...`: other options for `step.plr`

Details

This function computes cross-validated deviance or prediction errors for `step.plr`. The parameters that can be cross-validated are `lambda` and `cp`. If both are input as vectors (of length greater than 1), then a two-dimensional cross-validation is done. If either one is input as a single value, then the cross-validation is done only on the parameter with multiple inputs.

Author(s)

Mee Young Park and Trevor Hastie

References

See Also

`step.plr`
Examples

```r
n <- 100
p <- 5
x <- matrix(sample(seq(3),n*p,replace=TRUE),nrow=n)
y <- sample(c(0,1),n,replace=TRUE)
level <- vector("list",length=p)
for (i in 1:p) level[[i]] <- seq(3)
cvfit1 <- cv.step.plr(x,y,level=level,lambda=c(1e-4,1e-2,1),cp="bic")
cvfit2 <- cv.step.plr(x,y,level=level,lambda=1e-4,cp=c(2,3,4))
cvfit3 <- cv.step.plr(x,y,level=level,lambda=c(1e-4,1e-2,1),cp=c(2,3,4))
```

plr

Logistic regression with a quadratic penalization on the coefficients

Description

This function fits a logistic regression model penalizing the size of the L2 norm of the coefficients.

Usage

```r
plr(x, y, weights = rep(1,length(y)),
    offset=offset, subset = NULL, offset=offset, coefficients = NULL,
    lambda = 1e-4, cp = "bic")
```

Arguments

- **x**: matrix of features
- **y**: binary response
- **weights**: optional vector of weights for observations
- **offset**: optional vector of indices for the predictors for which the coefficients are preset to offset.coefficients. If offset.coefficients is not NULL, offset.subset must be provided.
- **offset.coefficients**: optional vector of preset coefficient values for the predictors in offset.subset. If offset.coefficients is not NULL, offset.coefficients must be provided.
- **lambda**: regularization parameter for the L2 norm of the coefficients. The minimizing criterion in plr is -log-likelihood+λ*∥β∥^2. Default is lambda=1e-4.
- **cp**: complexity parameter to be used when computing the score. score=deviance+cp*df. If cp="aic" or cp="bic", these are converted to cp=2 or cp=log(sample size), respectively. Default is cp="bic".

Details

We proposed using logistic regression with a quadratic penalization on the coefficients for detecting gene interactions as described in "Penalized Logistic Regression for Detecting Gene Interactions (2008)" by Park and Hastie. However, this function plr may be used for a general purpose.
Value

A plr object is returned. predict, print, and summary functions can be applied.

coefficients vector of the coefficient estimates

covariance sandwich estimate of the covariance matrix for the coefficients
deviance deviance of the fitted model

deviance of the null model

df degrees of freedom of the fitted model
score deviance + cp*df
nobs number of observations

cp complexity parameter used when computing the score
fitted.values fitted probabilities
linear.predictors linear predictors computed with the estimated coefficients
level If any categorical factors are input, level - the list of level sets - is automatically
generated and returned. See step.plr for details of how it is generated.

Author(s)

Mee Young Park and Trevor Hastie

References

Mee Young Park and Trevor Hastie (2008) Penalized Logistic Regression for Detecting Gene Inter-
actions

See Also

predict.plr, step.plr

Examples

n <- 100

p <- 10
x <- matrix(rnorm(n*p), nrow=n)
y <- sample(c(0,1), n, replace=TRUE)
fit <- plr(x,y,lambda=1)

p <- 3
z <- matrix(sample(seq(3), n*p, replace=TRUE), nrow=n)
x <- data.frame(x1=factor(z[,1]), x2=factor(z[,2]), x3=factor(z[,3]))
y <- sample(c(0,1), n, replace=TRUE)
fit <- plr(x,y,lambda=1)
'level' is automatically generated. Check 'fit$level'.
predict.plr

Prediction function for plr

Description

This function computes the linear predictors, probability estimates, or the class labels for new data, using a plr object.

Usage

```r
predict.plr(object, newx = NULL, 
            type = c("link", "response", "class"), ...) 
```

Arguments

- **object**
 plr object

- **newx**
 matrix of features at which the predictions are made. If newx=NULL, predictions for the training data are returned.

- **type**
 If type=link, the linear predictors are returned; if type=response, the probability estimates are returned; and if type=class, the class labels are returned. Default is type=link.

- **...**
 other options for prediction

Author(s)

Mee Young Park and Trevor Hastie

References

See Also

- plr

Examples

```r
n <- 100
p <- 10
x0 <- matrix(rnorm(n*p),nrow=n)
y <- sample(c(0,1),n,replace=TRUE)
fit <- plr(x0,y,lambda=1)
x1 <- matrix(rnorm(n*p),nrow=n)
pred1 <- predict(fit,x1,type="link")
pred2 <- predict(fit,x1,type="response")
pred3 <- predict(fit,x1,type="class")
```
predict.stepplr

This function computes the linear predictors, probability estimates, or the class labels for new data, using a stepplr object.

Usage

predict.stepplr(object, x = NULL, newx = NULL, type = c("link", "response", "class"), ...)

Arguments

object
 steplr object

x
 matrix of features used for fitting object. If newx is provided, x must be provided as well.

newx
 matrix of features at which the predictions are made. If newx=NULL, predictions for the training data are returned.

type
 If type="link", the linear predictors are returned; if type="response", the probability estimates are returned; and if type="class", the class labels are returned. Default is type="link".

... other options for prediction

Author(s)

Mee Young Park and Trevor Hastie

References

step.plr

See Also

stepplr

Examples

n <- 100
p <- 5
x0 <- matrix(sample(seq(3),n*p,replace=TRUE),nrow=n)
x0 <- cbind(rnorm(n),x0)
y <- sample(c(0,1),n,replace=TRUE)
level <- vector("list",length=6)
for (i in 2:6) level[[i]] <- seq(3)
fit <- step.plr(x0,y,level=level)
x1 <- matrix(sample(seq(3),n*p,replace=TRUE),nrow=n)
x1 <- cbind(rnorm(n),x1)
pred1 <- predict(fit,x0,x1,type="link")
pred2 <- predict(fit,x0,x1,type="response")
pred3 <- predict(fit,x0,x1,type="class")

step.plr | Forward stepwise selection procedure for penalized logistic regression

Description

This function fits a series of L2 penalized logistic regression models selecting variables through the forward stepwise selection procedure.

Usage

step.plr(x, y, weights = rep(1,length(y)), fix.subset = NULL,
 level = NULL, lambda = 1e-4, cp = "bic", max.terms = 5,
 type = c("both", "forward", "forward.stagewise"),
 trace = FALSE)

Arguments

x | matrix of features
y | binary response
weights | optional vector of weights for observations
fix.subset | vector of indices for the variables that are forced to be in the model
level | list of length ncol(x). The j-th element corresponds to the j-th column of x. If the j-th column of x is discrete, level[[j]] is the set of levels for the categorical factor. If the j-th column of x is continuous, level[[j]] = NULL. level is automatically generated in the function; however, if any levels of the categorical factors are not observed, but still need to be included in the model, then the user must provide the complete sets of the levels through level. If a numeric column needs to be considered discrete, it can be done by manually providing level as well.
lambda regularization parameter for the L2 norm of the coefficients. The minimizing criterion in plr is -log-likelihood+λ*||β||². Default is lambda=1e-4.

cp complexity parameter to be used when computing the score. score=deviance+cp*df. If cp="aic" or cp="bic", these are converted to cp=2 or cp=log(sample size), respectively. Default is cp="bic".

max.terms maximum number of terms to be added in the forward selection procedure. Default is max.terms=5.

type If type="both", forward selection is followed by a backward deletion. If type="forward", only a forward selection is done. If type="forward.stagewise", variables are added in the forward-stagewise method. Default is "both".

trace If TRUE, the variable selection procedure prints out its progress.

Details

This function implements an L2 penalized logistic regression along with the stepwise variable selection procedure, as described in "Penalized Logistic Regression for Detecting Gene Interactions (2008)" by Park and Hastie.

If type="forward", max.terms terms are sequentially added to the model, and the model that minimizes score is selected as the optimal fit. If type="both", a backward deletion is done in addition, which provides a series of models with a different combination of the selected terms. The optimal model minimizing score is chosen from the second list.

Value

A stepplr object is returned. anova, predict, print, and summary functions can be applied.

fit plr object for the optimal model selected
action list that stores the selection order of the terms in the optimal model
action.name list of the names of the sequentially added terms - in the same order as in action
deviance deviance of the fitted model
df residual degrees of freedom of the fitted model
score deviance + cp*df, where df is the model degrees of freedom
group vector of the counts for the dummy variables, to be used in predict.stepplr
y response variable used
weight weights used
fix.subset fix.subset used
level level used
lambda lambda used
cp complexity parameter used when computing the score
type type used
xnames column names of x

Author(s)

Mee Young Park and Trevor Hastie
References

See Also

cv.step.plr, plr, predict.stepplr

Examples

\[
n \leftarrow 100
\]
\[
\begin{align*}
p & \leftarrow 3 \\
z & \leftarrow \text{matrix}(\text{sample(seq(3),n*p,replace=TRUE),nrow=n}) \\
x & \leftarrow \text{data.frame}(x1=\text{factor}(z[,1]),x2=\text{factor}(z[,2]),x3=\text{factor}(z[,3])) \\
y & \leftarrow \text{sample}(c(0,1),n,\text{replace=TRUE}) \\
\text{fit} & \leftarrow \text{step.plr}(x,y) \\
\end{align*}
\]
'level' is automatically generated. Check 'fit$level'.

\[
p \leftarrow 5
\]
\[
\begin{align*}
x & \leftarrow \text{matrix}(\text{sample(seq(3),n*p,replace=TRUE),nrow=n}) \\
x & \leftarrow \text{cbind}(\text{rnorm}(n),x) \\
y & \leftarrow \text{sample}(c(0,1),n,\text{replace=TRUE}) \\
\text{level} & \leftarrow \text{vector}("list",\text{length}=6) \\
\text{for} (i \text{ in 2:6}) \text{level}[i] & \leftarrow \text{seq}(3) \\
\text{fit1} & \leftarrow \text{step.plr}(x,y,\text{level}=\text{level},\text{cp}="aic") \\
\text{fit2} & \leftarrow \text{step.plr}(x,y,\text{level}=\text{level},\text{cp}=4) \\
\text{fit3} & \leftarrow \text{step.plr}(x,y,\text{level}=\text{level},\text{type}="forward") \\
\text{fit4} & \leftarrow \text{step.plr}(x,y,\text{level}=\text{level},\text{max.terms}=10) \\
\end{align*}
\]
This is an example in which 'level' was input manually.
level[[1]] should be either 'NULL' or 'NA' since the first factor is continuous.
Index

*Topic models
 cv.step.plr, 1
 plr, 3
 predict.plr, 5
 predict.stepplr, 6
 step.plr, 7

*Topic regression
 cv.step.plr, 1
 plr, 3
 predict.plr, 5
 predict.stepplr, 6
 step.plr, 7

cv.step.plr, 1

plr, 3
predict.plr, 5
predict.stepplr, 6

step.plr, 7