Package ‘stam’

February 20, 2015

Version 0.0-1
Date 2010-01-01
Depends R (>= 2.10.0), np, sp
Title Spatio-Temporal Analysis and Modelling
Author Zhijie Zhang <epistat@gmail.com>
Maintainer Zhijie Zhang <epistat@gmail.com>
Description stam is an evolving package that target on the various methods to conduct Spatio-Temporal Analysis and Modelling, including Exploratory Spatio-Temporal Analysis and Inferred Spatio-Temporal Modelling.
License GPL (>= 2)
Repository CRAN
Date/Publication 2010-02-07 19:27:03
NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>R function</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>DateConversion</td>
<td>Conversion between Different Date Format</td>
<td></td>
</tr>
</tbody>
</table>

Description

DateConversion was used to read and output the date variable with your preferred format.
Usage

DateConversion(DateVar, DateIn, DateOut)

Arguments

DateVar Specify your date variable.
DateIn Specify the date format for your original variable, e.g. %m/%d/%Y.
DateOut Specify the date format that you hope to output, e.g. %d/%m/%Y.

Details

DateConversion is an easy function to convert a date variable between different formats, which is very useful for your manipulation on a dataset with date variables without time inside.

Value

DateConversion returns the date format that you expected directly.

Note

For dates,
More details, see above reference.

Author(s)

Zhijie Zhang, <epistat@gmail.com>

References

See Also

as.POSIX* for Date-time Conversion Functions #as.Date, Sys.Date, POSIXct, POSIXlt #Dates for dates without times. #strptime for conversion to and from character representations. #Sys.time for clock time as a POSIXct object. #difftime for time intervals. #cut.POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these classes. #weekdays.POSIXt for convenience extraction functions

Examples

Not run:
Example 1
a <- "10/20/1999"
DateConversion(a, DateIn="%m/%d/%Y", DateOut="%d/%m/%Y")
Example 2
b <- "27/12/2000"
stkde

Spatio-Temporal Kernel Density Estimation with Density Contours

Description

stkde calculates the three dimensional kernel density estimation of spatio-temporal mixed data, continuous space and discrete time.

Usage

stkde(xlong, ylat, ztime, xgrids, ygrids, breaks, alpha, nrowspar, ...)

Arguments

xlong Projected planar coordinates of longitude.
ylat Projected planar coordinates of latitude.
ztime The integer variable, such as YEAR, 1990, 1991 or 1, 2.
xgrids Number of grids to evaluate the density in the x direction.
ygrids Number of grids to evaluate the density in the y direction.
breaks breaks is to be used to specify the interval size for a numeric vector of probabilities with values in [0, 1]. Defaults to the 0.05.
alpha Specify the density level for indicating the statistically significant regions. Its default value is 0.05.
nrowspar specify the number of rows when plotting the figures in a panel. The default number is 1.
... additional arguments supplied to control various aspects of stkde. These arguments are the same as npudensbw in the np package, see details there.

Details

stkde is a method to conduct the spatio-temporal kernel density estimation, when the time variable is discrete or categorical variable, not continuous variable.
Value

stkde returns a stkde object, with the following components:
bw: bandwidth(s), scale factor(s) or nearest neighbours for the data.
dens: kernel estimation of the density (cumulative distribution) at the evaluation points.

Note

If you are using data of mixed types, then it is advisable to use the data.frame function to construct your input data and not cbind, since cbind will typically not work as intended on mixed data types and will coerce the data to the same type.

Author(s)

Zhijie Zhang, <epistat@gmail.com>

References

See Also

npudensbw(np), npudens(np)

Examples

```r
## Not run:
#Example1-uneven number of years
#Dataset1
# We will generate a 3 different stages’ case points.
# The higher density are in the off-diagonal direction.
x1<-c(runif(100,0,1),runif(50,0.67,1))
y1<-c(runif(100,0,1),runif(50,0.67,1))
d1<-data.frame(x1,y1)
colnames(d1)<-c("x","y")
x2<-c(runif(100,0,1),runif(50,0.33,0.67))
y2<-c(runif(100,0,1),runif(50,0.33,0.67))
d2<-data.frame(x2,y2)
colnames(d2)<-c("x","y")
x3<-c(runif(100,0,1),runif(50,0,0.33))
y3<-c(runif(100,0,1),runif(50,0,0.33))
d3<-data.frame(x3,y3)
colnames(d3)<-c("x","y")
d<-rbind(d1,d2,d3)
d$tfc<-c(rep(1,150),rep(2,150),rep(3,150))
#d is the simulated data
#d[1,]
#plot(d1);points(d2,col="red");points(d3,col="green")
#Key Code
```
stkde.base

Spatio-Temporal Kernel Density Estimation

Description

stkde.base calculates the three dimensional kernel density estimation of spatio-temporal mixed data, continuous space and discrete time.

Usage

stkde.base(xlong, ylat, ztime, xgrids, ygrids, breaks, ...)

Arguments

- **xlong**: Projected planar coordinates of longitude.
- **ylat**: Projected planar coordinates of latitude.
- **ztime**: The integer variable, such as YEAR, 1990, 1991 or 1, 2.
- **xgrids**: Number of grids to evaluate the density in the x direction.
- **ygrids**: Number of grids to evaluate the density in the y direction.
- **breaks**: is to be used to specify the interval size for a numeric vector of probabilities with values in [0, 1]. Defaults to the 0.05.
- **...**: additional arguments supplied to control various aspects of stkde. These arguments are the same as npudensbw in the np package, see details there.
stkde.base is a method to conduct the spatio-temporal kernel density estimation, when the time variable is discrete or categorical variable, not continuous variable.

stkde.base returns a stkde object, with the following components:
- `bw`: bandwidth(s), scale factor(s) or nearest neighbours for the data.
- `dens`: kernel estimation of the density (cumulative distribution) at the evaluation points.

If you are using data of mixed types, then it is advisable to use the data.frame function to construct your input data and not cbind, since cbind will typically not work as intended on mixed data types and will coerce the data to the same type.

Zhijie Zhang, <epistat@gmail.com>

Examples

```r
# Not run:
# EXAMPLE: Simulated dataset
# We will generate a 3 different stages' case points.
# The higher density are in the off-diagonal direction.
x1<-c(runif(100,0,1),runif(50,0.67,1))
y1<-c(runif(100,0,1),runif(50,0.67,1))
d1=data.frame(x1,y1)
colnames(d1)<-c("x","y")
x2<-c(runif(100,0,1),runif(50,0.33,0.67))
y2<-c(runif(100,0,1),runif(50,0.33,0.67))
d2=data.frame(x2,y2)
colnames(d2)<-c("x","y")
x3<-c(runif(100,0,1),runif(50,0,0.33))
y3<-c(runif(100,0,1),runif(50,0,0.33))
d3=data.frame(x3,y3)
colnames(d3)<-c("x","y")
d<-rbind(d1,d2,d3)
d$tf<-c(rep(1,150),rep(2,150),rep(3,150))
```
stkde.sig

#d is the simulated data
d[1,]
plot(d1); points(d2,col="red"); points(d3,col="green")

Key Code
attach(d)
samkde <- stkde.base(xlong=d$x, ylat=d$y, ztime=d$tf, xgrids=20, ygrids=20, breaks=0.05, bwmethod="cv.ml")

End(Not run)

<table>
<thead>
<tr>
<th>stkde.sig</th>
<th>Spatio-Temporal Kernel Density Estimation with Significant P-Value contours</th>
</tr>
</thead>
</table>

Description

stkde.sig calculates the three dimensional kernel density estimation of spatio-temporal mixed data, continuous space and discrete time. And also obtain the significant p-value contours to indicate the TRUE significant areas by the method of Monte Carlo.

Usage

stkde.sig(xlong, ylat, ztime, xgrids, ygrids, breaks, sim, alpha, nrowsepar, ...)

Arguments

- **xlong**: Same as the function of stkde.
- **ylat**: Same as the function of stkde.
- **ztime**: Same as the function of stkde.
- **xgrids**: Same as the function of stkde.
- **ygrids**: Same as the function of stkde.
- **breaks**: Same as the function of stkde.
- **sim**: Specify the number of simulations for Monte Carlo (sim-1). The default value is 100 and the actual simulated number is 100-1=99.
- **alpha**: Specify the significant level for generating the statistically significant p-value contours. Its default value is 0.05.
- **nrowspar**: specify the number of rows when plotting the figures in a panel. The default number is 1.
- **...**: additional arguments supplied to control various aspects of stkde. These arguments are the same as npudensbw in the np package, see details there.

Details

stkde is a method to conduct the spatio-temporal kernel density estimation with significant p-value contours to indicate the statistically significant area, when the time variable is discrete or categorical variable, not continuous variable.
Value

stkde returns a stkde object, with the following two arrays. Their dimensions are xgrids, ygrids and tlength, respectively:

dens: kernel estimation of the density (cumulative distribution) at the evaluation points.
pvalue: P values for the high density to be significant high values.

Note

This method is important for deleting the false-positive results of stkde.

Author(s)

Zhijie Zhang, <epistat@gmail.com>

References

See Also

npudensbw(np), npudens(np), stkde

Examples

```r
# Not run:
#Example1-uneven number of years
dataset1
x<-(runif(100,0,1),runif(50,0.67,1))
y<-(runif(100,0,1),runif(50,0.67,1))
d1<-data.frame(x,y)
colnames(d1)<-c("x","y")
x2<-(runif(100,0,1),runif(50,0.33,0.67))
y2<-(runif(100,0,1),runif(50,0.33,0.67))
d2<-data.frame(x2,y2)
colnames(d2)<-c("x","y")
x3<-(runif(100,0,1),runif(50,0,0.33))
y3<-(runif(100,0,1),runif(50,0,0.33))
d3<-data.frame(x3,y3)
colnames(d3)<-c("x","y")
d<-rbind(d1,d2,d3)
d$t<-(rep(1,150),rep(2,150),rep(3,150))
colnames(d)<-c("xlong","ylat","ztime")
#Running the function
stkde_sig(d[,1],d[,2],d[,3],xgrids=20,ygrids=20,breaks=0.05,sim=3,alpha=0.05,nrowspar=1)
```
#reports the time spent in garbage collection so far in the R session while GC timing was enabled
gc.time(stkde.sig(d[,1],d[,2],xgrids=20,ygrids=20,breaks=0.05,sim=3,alpha=0.05,nrowspar=1))
#Return CPU (and other) times that expr used.
system.time(stkde.sig(d[,1],d[,2],d[,3],xgrids=20,ygrids=20,breaks=0.05,sim=3,alpha=0.05,nrowspar=1))
#determines how much real and CPU time (in seconds) the currently running R process has already taken
proc.time(stkde.sig(d[,1],d[,2],d[,3],xgrids=20,ygrids=20,breaks=0.05,sim=3,alpha=0.05,nrowspar=1))
#
#Example2—even number of years
#Dataset2
x12<c(runif(100,0,1),runif(50,0.67,1))
y12<c(runif(100,0,1),runif(50,0.67,1))
d12<data.frame(x12,y12)
colnames(d12)<-c("x","y")
x22<c(runif(100,0,1),runif(50,0.33,0.67))
y22<c(runif(100,0,1),runif(50,0.33,0.67))
d22<data.frame(x22,y22)
colnames(d22)<-c("x","y")
d2c<-cbind(d12,d22)
d2$tf<c(rep(1,150),rep(2,150))
colnames(d2)<c("xlong","ylat","ztime")

#Running the function
stkde.sig(d2[,1],d2[,2],d2[,3],xgrids=20,ygrids=20,breaks=0.05,sim=3,alpha=0.05,nrowspar=2)
#reports the time spent in garbage collection so far in the R session while GC timing was enabled
gc.time(stkde.sig(d[,1],d[,2],d[,3],xgrids=20,ygrids=20,breaks=0.05,sim=3,alpha=0.05,nrowspar=2))
#Return CPU (and other) times that expr used.
system.time(stkde.sig(d[,1],d[,2],d[,3],xgrids=20,ygrids=20,breaks=0.05,sim=3,alpha=0.05,nrowspar=2))
#determines how much real and CPU time (in seconds) the currently running R process has already taken
proc.time(stkde.sig(d[,1],d[,2],d[,3],xgrids=20,ygrids=20,breaks=0.05,sim=3,alpha=0.05,nrowspar=2))

End(Not run)
Details

`UorL` is an easy function to convert the letters for a character variable into uppercase or lowercase.

Value

`UorL` returns the results of conversion directly.

Note

None.

Author(s)

Zhijie Zhang, <epistat@gmail.com>

See Also

See also `toupper` and `tolower` functions.

Examples

```r
## Not run:
# Example
l<-"IamAGenius"
UorL(l)
UorL(l,charlower=TRUE)
UorL(l,charlower=T)
UorL(l,charlower=FALSE)
UorL(l,charlower=F)
```

End(Not run)
Index

*Topic character
 UorL, 9

*Topic date
 DateConversion, 1

*Topic nonparametric, spatio-temporal
 analysis
 stkde, 3
 stkde.base, 5
 stkde.sig, 7

*Topic
 DateConversion, 1
 UorL, 9

DateConversion, 1

stkde, 3
stkde.base, 5
stkde.sig, 7

UorL, 9