Package ‘ssanv’

June 23, 2015

Type Package
Title Sample Size Adjusted for Nonadherence or Variability of Input Parameters
Version 1.1
Date 2015-06-22
Author Michael P. Fay <mfay@niaid.nih.gov>
Maintainer Michael P. Fay <mfay@niaid.nih.gov>
Depends R (>= 2.1.1), stats
Description A set of functions to calculate sample size for two-sample difference in means tests. Does adjustments for either nonadherence or variability that comes from using data to estimate parameters.
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2015-06-23 17:26:38

R topics documented:

ssanv-package .. 2
example.of.Fisher.exact ... 3
find.calibrated.beta ... 3
ss.fromdata.neff .. 4
ss.fromdata.nvar ... 6
ss.fromdata.pois ... 7
ss.nonadh ... 9
unirout.integer ... 11

Index 13
Description

Calculate sample size for two sample difference in means tests. The function, ss.nonadh accounts for known proportions of nonadherence. There are three functions that calculate sample size accounting for the variability that comes from estimating parameters from data.

Details

Package: ssanv
Type: Package
Version: 1.1
Date: 2015-06-22
License: GPL3

This package does adjustments for sample size calculations for two-sample difference in means tests. The function ss.nonadh adjusts for nonadherence, where the responses may be continuous, discrete, or binary. There are 3 functions which account for variability of estimating parameters from data: ss.fromdata.nvar-- accounts for variability of standard deviation estimate when data are normal and the clinically significant difference is known, ss.fromdata.neff-- accounts for variability of estimated standardized difference in means when both groups come from normal distributions with the same variance, ss.fromdata.pois-- accounts for variability of means when both means are estimated from data assumed Poisson.

Author(s)

Michael Fay <mfay@niaid.nih.gov>
Maintainer: Michael Fay <mfay@niaid.nih.gov>

References

Examples

Suppose treatment will not work on about 30 percent of subjects
then rho0=.3 and clinically significant difference in means is .5
ss.nonadh(delta=.5,rho=.3)

Suppose you estimate standard deviation of .32 from a sample of size 12
and the clinically significant difference is .2
example.of.Fisher.exact

Object of class 'power.htest'

Description

Result from ss.nonad<\texttt{h}>(mu0=.1, mu1=.4, refinement="Fisher.exact"). It took about 8 seconds to calculate.

Usage

data(example.of.Fisher.exact)

Details

Compared with StatXact, gives same sample sizes.

find.calibrated.beta Find calibrated beta

Description

Called by \texttt{ss.fromdata.nvar}. Finds calibrated beta (1-power) for use when estimating standard deviation from data in sample size calculations for differences in two normal means.

Usage

\texttt{find.calibrated.beta(beta, df, alpha = 0.05)}

Arguments

<table>
<thead>
<tr>
<th>beta</th>
<th>1-nominal.power</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>alpha</td>
<td>one-sided significance level of test</td>
</tr>
</tbody>
</table>

Details

See \texttt{ss.fromdata.nvar}.
Value
Calibrated beta value = 1 - calibrated power.

Author(s)
Michael P. Fay

References

See Also
ss.fromdata.nvar

Examples
```r
## see Table 2 of Fay et al 2006.
1-find.calibrated.beta(.2,12,.025)
```

ss.fromdata.neff
Find sample sizes when normal standardized difference is estimated from data

Description
Calculate sample sizes for two-sample differences in normal means when standardized difference is estimated from existing data

Usage
```r
ss.fromdata.neff(thetahat, m0, m1, ss.ratio = 1, thetaB = 0, 
                    sig.level = 0.05, real.power = 0.8, nominal.power = NULL, 
                    alternative = c("two.sided", "one.sided"), 
                    MINN0 = 2, MAXN0 = Inf, subdivisions = 1000)
```

Arguments
- `thetahat`: estimated standardized difference in means
- `m0`: sample size from control group of existing data
- `m1`: sample size from treatment group of existing data
- `ss.ratio`: n1/n0, where n0 (n1) is sample size of control (treatment) group for proposed study
thetaB: boundary value between null and alternative hypotheses for one-sided tests (see details)

sig.level: significance level (Type I error)

real.power: minimum power that you want the sample size to achieve, only .8 or .9 allowed

nominal.power: see details

alternative: One- or two-sided test

MINN0: minimum sample size for control group

MAXN0: maximum sample size for control group

subdivisions: number of subdivisions for numerical integration

Details

Calculates the sample sizes for a study designed to test the difference between the means of two groups, where it is assumed that the responses from each group are distributed normally with the same variance. The standardized difference in means (\(\text{thetahat} \)) is estimated from existing data that is assumed to also follow the same normal distribution. The method is inherently conservative, so that with a nominal power of .76 the real power will be about .80, and a nominal power of .88 the real power will be about .90. Other values of nominal power are allowed, but only real powers of .80 or .90 are allowed. The one-sided tests are designed to test either \(H_0 : \theta \leq \theta_B \) vs. \(H_1 : \theta > \theta_B \) or to test \(H_0 : \theta \geq \theta_B \) vs. \(H_1 : \theta < \theta_B \). The choice of hypotheses is determined by the value of \(\text{thetahat} \); if \(\text{thetahat} > \theta_B \) then the former hypotheses are tested, otherwise the latter are.

See Fay, Halloran and Follmann (2007) for details.

Value

Object of class "power.htest", a list of the arguments (including the computed sample sizes) augmented with 'METHOD' and 'NOTE' elements. The values 'n0' and 'n1' are the samples sizes for the two groups, rounded up to the nearest integer.

Note

The function ss.fromdata.neff calls \texttt{uniroot.integer}, a function written for this package that finds the nearest integer to the root.

Author(s)

Michael P. Fay

References

See Also

ss.fromdata.nvar, ss.fromdata.pois, ss.nonadh, \texttt{uniroot.integer}
Examples

```r
ss.fromdata.neff(.588,23,25)
```

ss.fromdata.nvar
Find sample sizes when normal standard deviation is estimated from data

Description

Calculate sample sizes for two-sample differences in normal means when the standard deviation (or variance) is estimated from existing data.

Usage

```r
ss.fromdata.nvar(delta, sdhat = NULL, vhat = NULL,
                   df = Inf, ss.ratio = 1, var.ratio = 1, deltaB = 0,
                   sig.level = 0.05, power = 0.8,
                   alternative = c("two.sided", "one.sided"))
```

Arguments

- `delta`: clinically significant difference in means
- `sdhat`: estimate of standard deviation from existing data (must supply either `sdhat` or `vhat`)
- `vhat`: estimate of variance from existing data (must supply either `sdhat` or `vhat`)
- `df`: degrees of freedom associated with standard deviation (or variance) estimate
- `ss.ratio`: \(n_1/n_0\), where \(n_0\) (\(n_1\)) is sample size of control (treatment) group for proposed study
- `var.ratio`: \(\sigma_1^2/\sigma_0^2\), where \(\sigma_1\) (\(\sigma_0\)) is standard deviation of control (treatment) group for proposed study
- `deltaB`: boundary value between null and alternative hypotheses for one-sided tests (see details)
- `sig.level`: significance level (Type I error)
- `power`: minimum power that you want the sample size to achieve
- `alternative`: One- or two-sided test

Details

Calculates the sample sizes for a study designed to test the difference between the means of two groups, where it is assumed that the responses from each group are distributed normally. The standard deviation (`sdhat`) or variance (`vhat`) is estimated from existing data that is assumed to also follow a normal distribution with variance the same as the control group of the proposed study. If `sdhat` (or `vhat`) is estimated from one group with a sample size of \(m\), then \(df=m-1\). If `sdhat` (or `vhat`) is estimated from two groups with sample sizes of \(m_0\) and \(m_1\), then \(df=m_0+m_1-2\).
The one-sided tests are designed to test either $H_0: \delta \leq \delta_B$ vs. $H_1: \delta > \delta_B$ or to test $H_0: \delta \geq \delta_B$ vs. $H_1: \delta < \delta_B$. The choice of hypotheses is determined by the value of delta; if $\delta > \delta_B$ then the former hypotheses are tested, otherwise the latter are.

See Fay, Halloran and Follmann (2007) for details.

Value

Object of class "power.htest", a list of the arguments (including the computed sample sizes) augmented with 'METHOD' and 'NOTE' elements. The values 'n0' and 'n1' are the samples sizes for the two groups, rounded up to the nearest integer.

Note

The function ss.fromdata.nvar calls find.calibrated.beta, a function written for this package that finds the calibrated beta value (see Fay, Halloran and Follmann, 2007).

Author(s)

Michael P. Fay

References

See Also

ss.fromdata.neff, ss.fromdata.pois, ss.nonadh, find.calibrated.beta

Examples

ss.fromdata.nvar(,4, sdat=.682, df=46)
ss.fromdata.pois

Arguments

xbar0 mean from control group of existing data
xbar1 mean from treatment group of existing data
m0 sample size of control group of existing data
m1 sample size of treatment group of existing data
ss.ratio n1/n0, where n0 (n1) is sample size of control (treatment) group for proposed study
sig.level significance level (Type I error)
real.power minimum power that you want the sample size to achieve, only .8 or .9 allowed
nominal.power see details
alternative One- or two-sided test
MINN0 minimum sample size for control group
MAXN0 maximum sample size for control group

Details

Calculates the sample sizes for a study designed to test the difference between the means of two groups, where it is assumed that the responses from both groups are distributed Poisson. The means from each group (xbar0 and xbar1) come from existing data that is assumed to also follow the same Poisson distributions. The method is inherently conservative, so that with a nominal power of .77 the real power will be about .80, and a nominal power of .89 the real power will be about .90. Other values of nominal power are allowed, but only real powers of .80 or .90 are allowed. If mu0 and mu1 are the means from the two groups, the one-sided tests are designed to test either $H_0 : \mu_0 \leq \mu_1$ vs. $H_1 : \mu_0 > \mu_1$ or to test $H_0 : \mu_0 \geq \mu_1$ vs. $H_1 : \mu_0 < \mu_1$. We estimate μ_0 and μ_1 with $\hat{\mu}_0 = xbar0 + \frac{1}{2m0}$ and $\hat{\mu}_1 = xbar1 + \frac{1}{2m1}$. The choice of hypotheses is determined by the value of $\hat{\mu}_0$ and $\hat{\mu}_1$; if $\hat{\mu}_0 > \hat{\mu}_1$ then the former hypotheses are tested, otherwise the latter are. See Fay, Halloran and Follmann (2007) for details.

Value

Object of class "power.htest", a list of the arguments (including the computed sample sizes) augmented with 'METHOD' and 'NOTE' elements. The values 'n0' and 'n1' are the samples sizes for the two groups, rounded up to the nearest integer.

Note

The function ss.fromdata.pois calls uniroot.integer, a function written for this package that finds the nearest integer to the root.

Author(s)

Michael P. Fay
ss.nonadh

References

See Also
ss.fromdata.nvar, ss.fromdata.neff, ss.nonadh, uniroot.integer

Examples
ss.fromdata.pois(1.65,.88,23,25)

Description
Calculate sample sizes needed for a two-sample difference in means test accounting for nonadherence (i.e., noncompliance) in a proportion of subjects.

Usage
ss.nonadh(mu0 = NULL, mu1 = NULL, delta = NULL, sigma0.sq = 1, rho0 = 0, rho1 = 0, ss.ratio = 1, var.ratio = 1, deltaB = 0, sig.level = 0.05, power = 0.8, alternative = c("two.sided","one.sided"), refinement = NULL, error.fisher=10^-6)

Arguments
mu0 mean of control group
mu1 mean of treatment group
delta mu0 - mu1
sigma0.sq variance of control group
rho0 probability that a subject randomized to control will switch to treatment
rho1 probability that a subject randomized to treatment will switch to control (or respond like control subjects)
ss.ratio n1/n0, where n0 (n1) is sample size of control (treatment) group for proposed study
var.ratio \(\sigma_1^2/\sigma_0^2 \), where \(\sigma_0 \) (\(\sigma_1 \)) is standard deviation of control (treatment) group for proposed study
deltaB boundary value between null and alternative hypotheses for one-sided tests (see details)
sig.level significance level (Type I error)
power minimum power that you want the sample size to achieve
alternative One- or two-sided test
refinement More precise sample size estimates for certain types of responses, possible values: NULL (use asymptotic method), 'Normal' or 'N', 'Bernoulli' or 'B', and 'Fisher.exact' or 'F'.
error.fisher bound on the absolute error of the power calculations for the Fisher.exact refinement

Details

Calculates the sample sizes for a study designed to test the difference between the means of two groups, where a proportion of those randomized to the control regimen switch to the treatment regimen (rho0) and a proportion of those randomized to the treatment regimen switch to the control regimen (rho1).

You must supply either mu0 and mu1 or delta=mu0-mu1. The one-sided tests are designed to test either H0: δ ≤ δB vs. H1: δ > δB or to test H0: δ ≥ δB vs. H1: δ < δB. The choice of hypotheses is determined by the value of delta; if delta > deltaB then the former hypotheses are tested, otherwise the latter are.

The responses may be continuous, discrete, or even binary. The value refinement defines different methods related to the response type. When refinement=NULL, the method is based on asymptotic normal approximation. For refinement='Normal' the method is based on the t-distribution derived when the responses are normal. For refinement= 'Bernoulli' the sigma0Nsq and varNratio values are defined by mu0 and mu1, and the sample sizes do not use any continuity correction. For refinement= 'Fisher.exact' only the two-sided alternative is allowed and the sample size related to exact powers for the 2X2 Fisher exact test are calculated.

See Fay, Halloran and Follmann (2007) for details.

Value

Object of class "power.htest", a list of the arguments (including the computed sample sizes) augmented with 'METHOD' and 'NOTE' elements. The values 'n0' and 'n1' are the samples sizes for the two groups, rounded up to the nearest integer.

Note

If you have a two-sided hypotheses with binary data, then refinement='Fisher.exact' is more accurate than refinement='Bernoulli', but it takes considerably longer to run. If 'Fisher.exact' is chosen the method uses the unifroot.integer function, and if you 'Esc' during the calculation, intermediate exact powers will print.

Author(s)

Michael P. Fay

References

uniroot.integer

Find the root of a function to the nearest integer

Description

Let f be a monotonic function that changes sign within the interval specified. If f(i)=0 for some i within the interval specified (including the ends of the interval), then the root is i. Otherwise if pos.side=TRUE (or FALSE) then uniroot.integer finds the integer i such that f(i) is closest to the sign change and is positive (or negative).

Usage

uniroot.integer(f, interval, lower = min(interval), upper = max(interval),
 step.power = 6, step.up = TRUE, pos.side = FALSE, print.steps = FALSE,
 maxiter = 1000, ...)

Arguments

f function for which a root is needed
interval an interval giving minimum and maximum allowable values for root
lower minimum allowable root
upper maximum allowable root
step.power initial step size is $2^{\text{step.power}}$
step.up if TRUE steps up from 'lower', if FALSE steps down from 'upper'
pos.side if TRUE finds integer, i, closest to the root such that f(i) > zero
print.steps if TRUE, prints iterations
maxiter maximum number of iterations
... additional arguments to 'f'.

Examples

Suppose treatment will not work on about 30 percent of subjects
then rho0=.3 and clinically significant difference in means is .5
ss.nonadh(delta=.5,rho0=.3)

Binary data, quick calculation
ss.nonadh(mu0=.1, mu1=.4, refinement="B")
Calculate Fisher.exact before packaging, took about 8 seconds
example.of.Fisher.exact<-ss.nonadh(mu0=.1, mu1=.4, refinement="Fisher.exact")
data(example.of.Fisher.exact)
ex ample.of.Fisher.exact
The algorithm evaluates \(f(i) \) iteratively, increasing (or decreasing if step.up=FALSE) \(i \) by \(2^{\text{step.power}} \) until either \(f(i) = 0 \) or \(f(i) \) switches sign. If \(f(i) = 0 \), then stop. If \(f(i) \) switches sign, then the change in \('i' \) is halved each iteration until convergence.

Value

A list with the following elements:

- \(\text{root} \): the integer on the correct side of the root
- \(\text{f.root} \): value of \(f \) at root
- \(\text{iter} \): number of times \(f \) was evaluated

Note

Unlike \texttt{uniroot}, the function is not automatically evaluated at both extremes. This makes \texttt{uniroot.integer} an efficient method to use when the calculation time of \(f(i) \) increases with the value of \('i' \). For an example of the importance of this see \texttt{ss.fromdata.pois}.

Author(s)

Michael P. Fay

See Also

\texttt{uniroot}, used by \texttt{ss.fromdata.neff}, \texttt{ss.fromdata.pois}, \texttt{ss.nonadh}

Examples

```r
root.func <- function(i) i - 500.1
## initial step sizes = 2^2 = 4
uniroot.integer(root.func,c(0,Inf),step.power=2)
## more efficient to use bigger initial step sizes = 2^10 = 1024
uniroot.integer(root.func,c(0,Inf),step.power=10,print.steps=TRUE)
```
Index

*Topic datasets
 example.of.Fisher.exact, 3

*Topic htest
 find.calibrated.beta, 3
 ss.fromdata.neff, 4
 ss.fromdata.nvar, 6
 ss.fromdata.pois, 7
 ss.nonadh, 9
 ssanv-package, 2
 uniroot.integer, 11

example.of.Fisher.exact, 3

find.calibrated.beta, 3, 7

ss.fromdata.neff, 4, 7, 9, 11, 12
ss.fromdata.nvar, 3–5, 6, 9, 11
ss.fromdata.pois, 5, 7, 7, 11, 12
ss.nonadh, 5, 7, 9, 9, 12
ssanv (ssanv-package), 2
ssanv-package, 2

uniroot, 12
uniroot.integer, 5, 8–11, 11