Package ‘spcosa’

December 22, 2015

Type Package

Title Spatial Coverage Sampling and Random Sampling from Compact Geographical Strata

Version 0.3-6

Date 2015-12-19

Description Spatial coverage sampling and random sampling from compact geographical strata created by k-means.

Depends R (>= 3.1.0), rJava (>= 0.9-3), methods, utils

Imports sp (>= 1.1-0), ggplot2 (>= 1.0.0)

Suggests grid, gstat, rgdal, rgl, rglwidget, RUnit, knitr

SystemRequirements Java (>= 6.0)

License GPL (>= 3)

R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>spcosa-package</td>
<td>3</td>
</tr>
<tr>
<td>CompactStratification-class</td>
<td>4</td>
</tr>
<tr>
<td>CompactStratificationEqualArea-class</td>
<td>5</td>
</tr>
<tr>
<td>CompactStratificationPriorPoints-class</td>
<td>6</td>
</tr>
<tr>
<td>estimate-methods</td>
<td>7</td>
</tr>
<tr>
<td>getArea-methods</td>
<td>8</td>
</tr>
<tr>
<td>getCentroid-methods</td>
<td>8</td>
</tr>
<tr>
<td>getNumberOfStrata-methods</td>
<td>9</td>
</tr>
<tr>
<td>getObjectiveFunctionValue-methods</td>
<td>9</td>
</tr>
<tr>
<td>getRelativeArea-methods</td>
<td>9</td>
</tr>
<tr>
<td>getSampleSize-methods</td>
<td>10</td>
</tr>
<tr>
<td>plot-methods</td>
<td>10</td>
</tr>
<tr>
<td>SamplingPattern-class</td>
<td>11</td>
</tr>
<tr>
<td>SamplingPatternCentroids-class</td>
<td>11</td>
</tr>
<tr>
<td>SamplingPatternPriorPoints-class</td>
<td>12</td>
</tr>
<tr>
<td>SamplingPatternPurposive-class</td>
<td>13</td>
</tr>
<tr>
<td>SamplingPatternRandom-class</td>
<td>13</td>
</tr>
<tr>
<td>SamplingPatternRandomComposite-class</td>
<td>14</td>
</tr>
<tr>
<td>SamplingPatternRandomSamplingUnits-class</td>
<td>15</td>
</tr>
<tr>
<td>SamplingVariance-class</td>
<td>16</td>
</tr>
<tr>
<td>SpatialCumulativeDistributionFunction-class</td>
<td>16</td>
</tr>
<tr>
<td>SpatialMean-class</td>
<td>17</td>
</tr>
<tr>
<td>SpatialVariance-class</td>
<td>18</td>
</tr>
<tr>
<td>spsample-methods</td>
<td>18</td>
</tr>
<tr>
<td>StandardError-class</td>
<td>19</td>
</tr>
<tr>
<td>Statistic-class</td>
<td>20</td>
</tr>
<tr>
<td>Stratification-class</td>
<td>21</td>
</tr>
<tr>
<td>stratify-methods</td>
<td>21</td>
</tr>
</tbody>
</table>

Index

24
spcosa-package

Spatial Coverage Sampling and Random Sampling from Compact Geographical Strata

Description

Algorithms for spatial coverage sampling and for random sampling from compact geographical strata based on

\[k \]

Details

The spcosa-package provides algorithms for spatial coverage sampling and for random sampling from compact geographical strata based on

\[k \]

-k-means (see de Gruijter et al., 2006, Walvoort et al., 2010, and kmeans). S4-classes and methods are available for spatial coverage sampling, random sampling from compact geographical strata, and stratified simple random sampling for composites. In case of spatial coverage sampling, existing sampling points may be taken into account. See the package vignette for more information and examples.

Note

In order to get the spcosa-package running, make sure that a recent version of Java (>= 6.0) is installed. Free Java downloads are available at http://www.java.com.

In case of problems, you may wish to consult the FAQ located at C:\Temp\Rtmp0WiefP\Rinst1104341414fc\spcosa\FAQ

Author(s)

D.J.J. Walvoort, D.J. Brus, J.J. de Gruijter,
Maintainer: Dennis Walvoort <dennis.walvoort@wur.nl>

References

Walvoort, D. J. J., Brus, D. J. and de Gruijter, J. J. (2010). An R package for spatial coverage sampling and random sampling from compact geographical strata by

\[k \]

CompactStratification-class

See Also

stratify for stratification, spsample for sampling, and estimate for inference.

CompactStratification-class

Class "CompactStratification"

Description

A class for storing a stratification with compact strata.

Objects from the Class

Objects can be created by calls of the form new("CompactStratification", cells, stratumId, centroids, mssd).
However, objects are usually created by calling stratify.

Slots

cells: Object of class "SpatialPixels", representing the area to be partitioned.
stratumId: Object of class "integer", indicating to which stratum each cell in cells belong.
centroids: Object of class "SpatialPoints", representing the centers of gravity of each stratum.
mssd: Object of class "numeric", representing the mean squared shortest distance.

Extends

Class "Stratification", directly.

Methods

coerce signature(from = "CompactStratification", to = "data.frame"): coerces to "data.frame".
coerce signature(from = "CompactStratification", to = "SpatialPixels"): coerces to "SpatialPixels".

coerce signature(from = "CompactStratification", to = "SpatialPixelsDataFrame"): coerces to "SpatialPixelsDataFrame".

estimate signature(statistic = "SamplingVariance", stratification = "CompactStratification", samplingPattern = "randomSamplingUnits"): estimates the sampling variance. See "SamplingVariance" for more details.

estimate signature(statistic = "SpatialCumulativeDistributionFunction", stratification = "CompactStratification", samplingPattern = "randomSamplingUnits"): estimates the spatial cumulative distribution function (SCDF). See "SpatialCumulativeDistributionFunction" for more details.

estimate signature(statistic = "SpatialMean", stratification = "CompactStratification", samplingPattern = "randomSamplingUnits"): estimates the spatial mean. See "SpatialMean" for more details.

estimate signature(statistic = "SpatialVariance", stratification = "CompactStratification", samplingPattern = "randomSamplingUnits"): estimates the spatial variance. See "SpatialVariance" for more details.

estimate signature(statistic = "StandardError", stratification = "CompactStratification", samplingPattern = "randomSamplingUnits"): estimates the standard error of the spatial mean. See "StandardError" for more details.
estimate signature(statistic = "character", stratification = "CompactStratification", samplingPattern = "missing")
estimates statistic, one of spatial mean, spatial variance, SCDF, sampling variance, or standard error.

getArea signature(object = "CompactStratification"): returns the area of each stratum.

gGetCentroid signature(object = "CompactStratification"): returns the center of gravity of each stratum.

getNumberOfStrata signature(object = "CompactStratification"): returns the number of strata.

getObjectiveFunctionValue signature(object = "CompactStratification"): extracts the mean squared shortest distance.

getRelativeArea signature(object = "CompactStratification"): returns the relative area of each stratum. The sum of the relative areas equals one.

plot signature(x = "CompactStratification", y = "missing"): plots stratification x.

plot signature(x = "CompactStratification", y = "SamplingPattern"): plots sampling pattern y on top of stratification x.

plot signature(x = "CompactStratification", y = "SamplingPatternPriorPoints"): plots sampling pattern y on top of stratification x.

plot signature(x = "CompactStratification", y = "SamplingPatternRandomComposite"): plots sampling pattern y on top of stratification x.

spsample signature(x = "CompactStratification", n = "missing", type = "missing"): returns the centers of gravity of each stratum.

spsample signature(x = "CompactStratification", n = "numeric", type = "missing"): randomly selects n sampling points in each stratum.

Author(s)

Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter

CompactStratificationEqualArea-class

Class "CompactStratificationEqualArea"

Description

A class for storing a stratification with compact strata of equal size.

Objects from the Class

Objects can be created by calls of the form new("CompactStratificationEqualArea", cells, stratumId, centroids). However, objects are usually created by calling stratify.

Slots

cells: Object of class "SpatialPixels", representing the area to be partitioned.

stratumId: Object of class "integer", indicating to which stratum each cell in cells belong.

centroids: Object of class "SpatialPoints", representing the centers of gravity of each stratum.

mssd: Object of class "numeric", representing the mean squared shortest distance.
Extends

Methods

estimate signature(statistic = "SamplingVariance", stratification = "CompactStratificationEqualArea")
estimates the sampling variance. See "SamplingVariance" for more details.

estimate signature(statistic = "SpatialMean", stratification = "CompactStratificationEqualArea", samplingpattern = "randomcomposite")
estimates the spatial mean. See "SpatialMean" for more details.

spsample signature(x = "CompactStratificationEqualArea", n = "missing", type = "missing")
returns the centers of gravity of each stratum.

spsample signature(x = "CompactStratificationEqualArea", n = "numeric", type = "missing")
randomly selects n sampling points in each stratum.

spsample signature(x = "CompactStratificationEqualArea", n = "numeric", type = "character")
randomly selects n sampling points in each stratum. if type = "composite", stratified simple
random sampling of n composites.

Author(s)

Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter

CompactStratificationPriorPoints-class

Class "CompactStratificationPriorPoints"

Description

A class for storing a stratification with compact strata, given prior sampling locations.

Objects from the Class

Objects can be created by calls of the form new("CompactStratificationPriorPoints", cells, stratumId, centroids, mssd).
However, objects are usually created by calling stratify.

Slots

priorPoints: Object of class "SpatialPoints", containing the coordinates of the existing locations.
cells: Object of class "SpatialPixels", representing the area to be partitioned.
stratumId: Object of class "integer", indicating to which stratum each cell in cells belong.
centroids: Object of class"SpatialPoints", representing the centers of gravity of each stratum.
mssd: Object of class "numeric", representing the mean squared shortest distance.

Extends

Methods

spsample

signature(x = "CompactStratificationPriorPoints", n = "missing", type = "missing"):

returns the centers of gravity of strata without prior points in addition to the prior points.

Author(s)

Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter

Description

Methods for estimating statistics given a spatial sample.

Methods

statistic = "character", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits",
estimates one of the following statistics, depending on the value of argument statistic:
spatial mean, spatial variance, sampling variance, standard error, or scdf. See the
eamples below for details.

statistic = "character", stratification = "CompactStratificationEqualArea", samplingPattern = "SamplingPatternRandomComposite",
estimates one of the following statistics, depending on the value of argument statistic:
spatial mean, sampling variance, or standard error.

statistic = "SamplingVariance", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits",
estimates the sampling variance. See "SamplingVariance" for more details.

statistic = "StandardError", stratification = "CompactStratificationEqualArea", samplingPattern = "SamplingPatternRandomComposite",
estimates the standard error of the spatial mean. See "StandardError" for more details.

statistic = "SpatialCumulativeDistributionFunction", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits",
estimates the spatial cumulative distribution function (SCDF). See "SamplingPatternRandomSamplingUnits" for more details.

statistic = "SpatialMean", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits",
estimates the spatial mean. See "SpatialMean" for more details.

statistic = "SpatialVariance", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits",
estimates the spatial variance. See "SpatialVariance" for more details.

Examples

Note: the example below requires the 'rgdal'-package.
You may consider the 'maptools'-package as an alternative
if (require(rgdal)) {
 # read vector representation of the "Mijdrecht" area
 shp <- readOGR(
 dsn = system.file("maps", package = "spcosa"),
 layer = "mijdrecht"
)

 # stratify into 30 strata
 myStratification <- stratify(shp, nStrata = 30, nTry = 10, verbose = TRUE)
random sampling of two sampling units per stratum
mySamplingPattern <- spsample(myStratification, n = 2)

plot sampling pattern
plot(myStratification, mySamplingPattern)

simulate data
(in real world cases these data have to be obtained by field work etc.)
myData <- as(mySamplingPattern, "data.frame")
myData$observation <- rnorm(n = nrow(myData), mean = 10, sd = 1)

design-based inference
estimate("spatial mean", myStratification, mySamplingPattern, myData["observation"])
estimate("sampling variance", myStratification, mySamplingPattern, myData["observation"])
estimate("standard error", myStratification, mySamplingPattern, myData["observation"])
estimate("spatial variance", myStratification, mySamplingPattern, myData["observation"])
estimate("scdf", myStratification, mySamplingPattern, myData["observation"])

getArea-methods

Extract the Area of an Object

Description

Methods for extracting the area of objects.

Methods

object = "CompactStratification" returns the area of each stratum.

See Also

getRelativeArea

ggetCenroid-methods

Extract Centroids

Description

Methods for extracting centroids

Methods

object = "CompactStratification" returns the centers of gravity of each stratum.
getNumberOfStrata-methods

Extract the Number of Strata in an Object

Description

Methods for extracting the number of strata of objects.

Methods

object = "CompactStratification" returns the number of strata in a compact stratification.

getObjectiveFunctionValue-methods

Extract the Objective Function Value of an Object

Description

Methods for extracting the objective function value

Methods

object = "CompactStratification" extracts the mean squared shortest distance.

getRelativeArea-methods

Extract the Relative Area of an Object

Description

Methods for extracting relative areas of objects. The total area equals unity.

Methods

object = "CompactStratification" returns the relative area of each stratum. The sum of the relative areas equals 1.

See Also

getArea
getSampleSize-methods
Extract the sample size of an object

Description

Methods for extracting the sample size.

Methods

- **object = "SamplingPattern"** returns the sample size.
- **object = "SamplingPatternRandomComposite"** returns the number of composites

plot-methods
Visualizing Compact Stratifications and Sampling Patterns

Description

The plot method can be used to visualize compact stratifications and sampling patterns. Since it has been built on top of the **ggplot2** package, functions provided by this package can be used to modify the plots.

Methods

- **x = "CompactStratification", y = "missing"** plots stratification x.
- **x = "CompactStratification", y = "SamplingPattern"** plots sampling pattern y on top of stratification x.
- **x = "CompactStratification", y = "SamplingPatternPriorPoints"** plots sampling pattern y on top of stratification x.
- **x = "CompactStratification", y = "SamplingPatternRandomComposite"** plots sampling pattern y on top of stratification x.
- **x = "SamplingPattern", y = "missing"** plots sampling pattern x.
- **x = "SamplingPatternPriorPoints", y = "missing"** plots sampling pattern x.
- **x = "SamplingPatternRandomComposite", y = "missing"** plots sampling pattern x.

See Also

ggplot2-package
SamplingPattern-class

Class "SamplingPattern"

Description
A class for storing a sampling pattern.

Objects from the Class
Objects can be created by calls of the form new("SamplingPattern", ...). However, objects are usually created by calling spsample.

Slots
sample: Object of class "SpatialPoints", containing the sampling locations.

Methods

coerce signature(from = "SamplingPattern", to = "data.frame"): coerces to "data.frame".

coerce signature(from = "SamplingPattern", to = "SpatialPoints"): coerces to "SpatialPoints".

getSampleSize signature(object = "SamplingPattern"): returns the sample size.

plot signature(x = "CompactStratification", y = "SamplingPattern"): plots sampling pattern y on top of stratification x.

plot signature(x = "SamplingPattern", y = "missing"): plots sampling pattern x.

show signature(object = "SamplingPattern"): prints object on the output device.

Author(s)

Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter

SamplingPatternCentroids-class

Class "SamplingPatternCentroids"

Description
A class for storing a sampling pattern, where the sampling locations are the centers of gravity of each stratum.

Objects from the Class
Objects can be created by calls of the form new("SamplingPatternCentroids", ...). However, objects are usually created by calling spsample.

Slots
sample: Object of class "SpatialPoints", containing the sampling locations.
SamplingPatternPriorPoints-class

Description

A class for storing a sampling pattern consisting of existing points and new points. The new points are the centers of gravity of their stratum.

Objects from the Class

Objects can be created by calls of the form new("SamplingPatternPriorPoints", ...). However, objects are usually created by calling spsample.

Slots

isPriorPoint: Object of class "logical", which is TRUE is the location is a prior point, and FALSE if it is not.

sample: Object of class "SpatialPoints", containing the sampling locations

Extends

Methods

plot signature(x = "CompactStratification", y = "SamplingPatternPriorPoints"): plots sampling pattern y on top of stratification x.

plot signature(x = "SamplingPatternPriorPoints", y = "missing"): plots sampling pattern x.

Author(s)

Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter
SamplingPatternPurposive-class

Class "SamplingPatternPurposive"

Description
An ancestor class for storing purposive sampling patterns.

Objects from the Class
Objects can be created by calls of the form `new("SamplingPatternPurposive", ...)`.

Slots
sample: Object of class "SpatialPoints", containing the sampling locations

Extends
Class "SamplingPattern", directly.

Methods
No methods defined with class "SamplingPatternPurposive" in the signature.

Author(s)
Dennis J. J. Walvoort<dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter

SamplingPatternRandom-class

Class "SamplingPatternRandom"

Description
An ancestor class for storing random sampling patterns.

Objects from the Class
Objects can be created by calls of the form `new("SamplingPatternRandom", ...)`.

Slots
sample: Object of class "SpatialPoints", containing the sampling locations

Extends
Class "SamplingPattern", directly.

Methods
No methods defined with class "SamplingPatternRandom" in the signature.
Author(s)
Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter

SamplingPatternRandomComposite-class

Class "SamplingPatternRandomComposite"

Description
A class for storing composites obtained by random sampling.

Objects from the Class
Objects can be created by calls of the form new("SamplingPatternRandomComposite", ...). However, objects are usually created by calling spsample.

Slots
- composite: Object of class "integer", indicating to which composite sample a sampling unit belongs.
- sample: Object of class "SpatialPoints", containing the sampling locations.

Extends

Methods
- coerce signature(from = "SamplingPatternRandomComposite", to = "data.frame"): coerces to "data.frame".
- coerce signature(from = "SamplingPatternRandomComposite", to = "SpatialPointsDataFrame"): coerces to "SpatialPointsDataFrame".
- estimate signature(statistic = "SpatialMean", stratification = "CompactStratificationEqualArea", samplingpattern = "SamplingPatternRandomComposite", data = "data.frame"): estimates the spatial mean. See "SpatialMean" for more details.
- getSampleSize signature(object = "SamplingPatternRandomComposite"): returns the sample size per stratum.
- plot signature(x = "CompactStratification", y = "SamplingPatternRandomComposite"): plots sampling pattern y on top of stratification x.
- plot signature(x = "SamplingPatternRandomComposite", y = "missing"): plots sampling pattern x.

Author(s)
Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter
SamplingPatternRandomSamplingUnits-class

Class "SamplingPatternRandomSamplingUnits"

Description

A class for storing sampling units obtained by random sampling.

Objects from the Class

Objects can be created by calls of the form `new("SamplingPatternRandomSamplingUnits", ...)`. However, objects are usually created by calling `spsample`.

Slots

- `sample`: Object of class "SpatialPoints", containing the sampling locations.

Extends

Methods

- `estimate` signature(statistic = "SpatialMean", stratification = "CompactStratification", samplingPattern = `SamplingPatternRandomSamplingUnits`, data = `data.frame`): estimates the spatial mean. See "SpatialMean" for more details.

- `estimate` signature(statistic = "character", stratification = "CompactStratification", samplingPattern = `SamplingPatternRandomSamplingUnits`, data = `data.frame`): estimates statistic, i.e., "spatial mean", "spatial variance", "sampling variance", "standard error", SCDF.

Author(s)

Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter
SpatialCumulativeDistributionFunction-class

Class "SpatialCumulativeDistributionFunction"

Description
The spatial cumulative distribution function (SCDF) is estimated by applying Equation 7.13 in de Gruijter et al., (2006) to indicator transformations of the data. See also page 83 of de Gruijter et al., (2006).

Objects from the Class
Objects can be created by calls of the form new("SpatialCumulativeDistributionFunction", ...).

SamplingVariance-class

Class "SamplingVariance"

Description

Objects from the Class
Objects can be created by calls of the form new("SamplingVariance", ...).

Slots
description: Object of class "character" A description of the statistic.

Extends
Class "Statistic", directly.

Methods

estimate signature(statistic = "SamplingVariance", stratification = "CompactStratification", samplingpattern = "SamplingPatternRandomSamplingUnits", data = "data.frame")
estimates the sampling variance, given a stratification, a sampling pattern and data.

estimate signature(statistic = "SamplingVariance", stratification = "CompactStratificationEqualArea", samplingpattern = "SamplingPatternRandomComposite", data = "data.frame")
estimates the sampling variance, given a stratification, a sampling pattern and data.

Author(s)
Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter

References
Slots

- **description**: Object of class "character" A description of the statistic.

Extends

Class "Statistic", directly.

Methods

- `estimate` signature(statistic = "SpatialCumulativeDistributionFunction", stratification = "CompactStratification", samplingPattern = "RandomSamplingUnits", data = "data.frame") estimates the spatial cumulative distribution function (SCDF), given a stratification, a sampling pattern and data.

Author(s)

Dennis J. J. Walvoort<dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter

References

Description

The spatial mean is estimated by means of Equation 7.13 in de Gruijter et al., (2006).

Objects from the Class

Objects can be created by calls of the form `new("SpatialMean", ...)`.

Slots

- **description**: Object of class "character" A description of the statistic.

Extends

Class "Statistic", directly.

Methods

- `estimate` signature(statistic = "SpatialMean", stratification = "CompactStratificationEqualArea", samplingPattern = "RandomComposite", data = "data.frame") estimates the spatial mean, given a stratification, a sampling pattern and data.

Author(s)

Dennis J. J. Walvoort<dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter
SpatialVariance-class Class "SpatialVariance"

Description

The spatial variance is estimated by means of Equation 7.16 in de Gruijter et al., (2006).

Objects from the Class

Objects can be created by calls of the form new("SpatialVariance", ...).

Slots

description: Object of class "character" A description of the statistic.

Extends

Class "Statistic", directly.

Methods

estimate signature(statistic = "SpatialVariance", stratification = "CompactStratification", samplingpattern = "RandomSamplingUnits", data = "data.frame")
estimates the spatial variance, given a stratification, a sampling pattern and data.

Author(s)

Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter

References

spsample-methods Spatial Sampling of Compact Strata

Description

Methods for sampling in compact strata.
Methods

x = "CompactStratification", n = "missing", type = "missing" samples the centroids of each stratum.

x = "CompactStratification", n = "numeric", type = "missing" stratified simple random sampling with n samples per stratum.

x = "CompactStratificationEqualArea", n = "numeric", type = "character" if type = "composite", stratified simple random sampling of n composites.

x = "CompactStratificationPriorPoints", n = "missing", type = "missing" spatial infill sampling

See Also

stratify for stratification, spsample for other types of spatial sampling, and estimate for inference.

Examples

Note: the example below requires the 'rgdal'-package.
You may consider the 'maptools'-package as an alternative
if (require(rgdal)) {

 # read a vector representation of the 'Farmsum' field
 shpFarmsum <- readOGR(
 dsn = system.file("maps", package = "spsosa"),
 layer = "farmsum"
)

 # stratify 'Farmsum' into 50 strata
 # NB: increase argument 'nTry' to get better results
 set.seed(314)
 myStratification <- stratify(shpFarmsum, nStrata = 50, nTry = 1)

 # sample two sampling units per stratum
 mySamplingPattern <- spsample(myStratification, n = 2)

 # plot the resulting sampling pattern on
 # top of the stratification
 plot(myStratification, mySamplingPattern)
}

StandardError-class Class "StandardError"

Description

Objects from the Class

Objects can be created by calls of the form new("StandardError", ...).
Slots

description: Object of class "character" A description of the statistic.

Extends

Methods

estimate signature(statistic = "StandardError", stratification = "CompactStratification", samplingpattern = "Samplingpatternrandomsamplingunits", data = "dataframe"): estimates the standard error, given a stratification, a sampling pattern and data.

Author(s)

Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter

References

Statistic-class

Class "Statistic"

Description

A superclass (ancestor class) for statistics to estimate.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

description: A description of the statistic

Methods

show signature(object = "Statistic"): prints the statistic

Author(s)

Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter
Description

Virtual class to store a spatial stratification.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

- `show` signature(object = "Stratification"): a method for printing objects of class `Stratification`

Author(s)

Dennis J. J. Walvoort <dennis.walvoort@wur.nl>, D.J. Brus, J.J. de Gruijter

Examples

```
showClass("Stratification")
```

stratify-methods *Stratification*

Description

Methods for partitioning a spatial object into compact strata by means of

\[k \]

-k-means. The objective function to minimize is the mean squared shortest distance (MSSD). Optionally, the strata may be forced to be of equal size. This facilitates field work in case of stratified simple random sampling for composites. Another option is spatial infill sampling, a variant of spatial coverage sampling where existing sampling points are taken into account. Use `nTry > 1`, to reduce the risk of ending up in an unfavorable local optimum. Better results will generally be obtained by increasing the ratio `nGridCells/nStrata` and by increasing `nTry`.

Usage

```r
## S4 method for signature 'SpatialPixels'
stratify(object, nStrata, priorPoints = NULL, maxIterations = 1000, nTry = 1,
         equalArea = FALSE, verbose = getOption("verbose"))

## S4 method for signature 'SpatialGrid'
stratify(object, nStrata, priorPoints = NULL, maxIterations = 1000, nTry = 1,
         equalArea = FALSE, verbose = getOption("verbose"))

## S4 method for signature 'SpatialPolygons'
stratify(object, nStrata, priorPoints = NULL, maxIterations = 1000, nTry = 1,
         nGridCells = 2500, cellSize, equalArea = FALSE, verbose = getOption("verbose"))
```
Arguments

object an object of class "SpatialPixels", "SpatialGrid" or "SpatialPolygons"
nStrata number of strata (nStrata >= 1).
priorPoints object of class "SpatialPoints", containing the prior (i.e., existing) points
maxIterations maximum number of iterations.
nTry the stratify method will try nTry initial configurations and will keep the best
solution in order to reduce the risk of ending up with an unfavorable solution.
nGridCells in case object is an instance of class "SpatialPolygons", the approximate
number of grid cells to be used for discretizing the vector map in object.
cellSize in case object is an instance of class "SpatialPolygons", the cell size to be
used for discretizing the vector map in object. Note that cellsize takes precedence over argument nGridCells.
equalArea If FALSE the algorithm results in compact strata. If TRUE, the algorithm results
in compact strata of equal size.
verbose if TRUE, progress information and intermediate results will be printed to the output device.

Methods

object = "SpatialPixels" Stratify a raster representation of the study area.
object = "SpatialPolygons" Stratify a vector representation of the study area.

Note

The stratify method may raise an error when the projection attributes ("CRS") have been set.
A solution is to remove these attributes by calling the following function from the sp-package:
proj4string(myMap) <- NA_character_, where myMap is the map to be stratified.

References

the mean extractable phosphorus concentration of fields for environmental regulation. Geoderma
89:129-148

Resource Monitoring Berlin: Springer-Verlag.
Scales. Pedometron 26:20-22
Walvoort, D. J. J., Brus, D. J. and de Gruiter, J. J. (2010). An R package for spatial coverage
sampling and random sampling from compact geographical strata by

\[k \]

See Also

spsample for sampling, and estimate for inference.
Examples

```r
if (require(rgdal)) {
  # read a vector representation of the 'Farmsum' field
  shpFarmsum <- readOGR(
    dsn = system.file("maps", package = "spcosa"),
    layer = "farmsum"
  )

  # stratify 'Farmsum' into 50 strata
  # NB: increase argument 'nTry' to get better results
  set.seed(314)
  myStratification <- stratify(shpFarmsum, nStrata = 50, nTry = 1)

  # plot the resulting stratification
  plot(myStratification)
}
```
Index

*Topic classes
CompactStratification-class, 4
CompactStratificationEqualArea-class, 5
CompactStratificationPriorPoints-class, 6
SamplingPattern-class, 11
SamplingPatternCentroids-class, 11
SamplingPatternPriorPoints-class, 12
SamplingPatternPurposive-class, 13
SamplingPatternRandom-class, 13
SamplingPatternRandomComposite-class, 14
SamplingPatternRandomSamplingUnits-class, 15
SamplingVariance-class, 16
SpatialCumulativeDistributionFunction-class, 16
SpatialMean-class, 17
SpatialVariance-class, 18
StandardError-class, 19
Statistic-class, 20
Stratification-class, 21

*Topic methods
estimate-methods, 7
getArea-methods, 8
getCentroid-methods, 8
getNumberOfStrata-methods, 9
getObjectiveFunctionValue-methods, 9
getRelativeArea-methods, 9
getSampleSize-methods, 10
plot-methods, 10
spsample-methods, 18
stratify-methods, 21

*Topic package
spcosa-package, 3
coerce, CompactStratification, SpatialPixelsDataFrame-method
(CompactStratification-class), 4
coerce, CompactStratification, SpatialPoints-method
(SamplingPattern-class), 11
coerce, CompactStratification, SpatialPoints-method
(SamplingPattern-class), 11
coerce, CompactStratification, SpatialPoints-method
(SamplingPatternRandomComposite-class), 14
coerce, CompactStratification, SpatialPoints-method
(SamplingPatternRandomComposite-class), 14

24
estimate-methods, 7
getArea, 9
getArea(getArea-methods), 8
getArea(CompactStratification-method (getArea-methods)), 8
getArea-methods, 8
getCentroid(getCentroid-methods), 8
getCentroid(CompactStratification-method (getCentroid-methods)), 8
getCentroid-methods, 8
defineNumberOfStrata (defineNumberOfStrata-methods), 9
defineNumberOfStrata(CompactStratification-method (defineNumberOfStrata-methods)), 9
defineNumberOfStrata-methods, 9
defineObjectiveFunctionValue (defineObjectiveFunctionValue-methods), 9
defineObjectiveFunctionValue(CompactStratification-method (defineObjectiveFunctionValue-methods)), 9
defineObjectiveFunctionValue-methods, 9
defineRelativeArea, 8
defineRelativeArea(CompactStratification-method (defineRelativeArea-methods)), 9
defineRelativeArea-methods, 9
defineSampleSize (defineSampleSize-methods), 10
defineSampleSize(SamplingPattern-method (defineSampleSize-methods)), 10
defineSampleSize-methods, 10
defineSamplingPatternRandomComposite (defineSamplingPatternRandomComposite-methods), 10
defineSamplingPatternRandomComposite-methods, 10
kmeans, 3
plot(CompactStratification,missing-method (plot-methods)), 10
plot(CompactStratification,SamplingPattern-method (plot-methods)), 10
plot(CompactStratification,SamplingPatternPriorPoints-method (plot-methods)), 10
plot(CompactStratification,SamplingPatternRandomComposite-method (plot-methods)), 10
plot(SamplingPattern,missing-method (plot-methods)), 10
plot(SamplingPatternPriorPoints,missing-method (plot-methods)), 10
plot(SamplingPatternRandomComposite,missing-method (plot-methods)), 10
plot-methods, 10
SamplingPattern, 12–15
SamplingPattern-class, 11
SamplingPatternCentroids-class, 11
SamplingPatternPriorPoints-class, 12
SamplingPatternPurposive, 12
SamplingPatternPurposive-class, 13
SamplingPatternRandom, 14, 15
SamplingPatternRandom-class, 13
SamplingPatternRandomComposite-class, 14
SamplingPatternRandomSamplingUnits, 7, 15
SamplingPatternRandomSamplingUnits-class, 15
SamplingVariance, 4, 6, 7, 14, 15, 20
SamplingVariance-class, 16
show, SamplingPattern-method (SamplingPattern-class), 11
show, Statistic-method (Statistic-class), 20
show, Stratification-method (Stratification-class), 21
SpatialCumulativeDistributionFunction, 4
SpatialCumulativeDistributionFunction-class, 16
SpatialGrid, 22
SpatialMean, 4, 6, 7, 14, 15
SpatialMean-class, 17
SpatialPixels, 4–6, 22
SpatialPixelsDataFrame, 4
SpatialPoints, 4–6, 11–15, 22
SpatialPointsDataFrame, 14
SpatialPolygons, 22
SpatialVariance, 4, 7, 15
SpatialVariance-class, 18
spcosa (spcosa-package), 3
spcosa-package, 3
spsample, 4, 11, 12, 14, 15, 19, 22
spsample, CompactStratification,missing,missing-method (spsample-methods), 18
spsample, CompactStratification,numeric,numeric-method (spsample-methods), 18
spsample, CompactStratificationEqualArea,numeric,character-method (spsample-methods), 18
spsample, CompactStratificationPriorPoints,numeric,character-method (spsample-methods), 18
spsample-methods, 18
StandardError, 4, 7, 15
StandardError-class, 19
Statistic, 16–18, 20
Statistic-class, 20
Stratification, 4, 6
Stratification-class, 21
stratify, 4–6, 19
stratify (stratify-methods), 21
stratify, SpatialGrid-method (stratify-methods), 21
stratify, SpatialPixels-method (stratify-methods), 21
stratify, SpatialPolygons-method (stratify-methods), 21
stratify-methods, 21