Package ‘spBayes’

July 20, 2017

Version 0.4-1
Date 2017-07-18
Title Univariate and Multivariate Spatial-Temporal Modeling
Maintainer Andrew Finley <finleya@msu.edu>
Author Andrew Finley [aut, cre],
Sudipto Banerjee [aut]
Depends R (>= 1.8.0), coda, magic, abind, Formula
Suggests MBA, geoR
Description Fits univariate and multivariate spatio-temporal
random effects models for point-referenced data using Markov chain Monte Carlo (MCMC). De-
tails are given in Finley, Banerjee, and Gelfand (2015) <doi:10.18637/jss.v063.i13> and Fin-
License GPL (>= 2)
URL http://blue.for.msu.edu/software.html
Repository CRAN
NeedsCompilation yes
Date/Publication 2017-07-19 22:21:37 UTC

R topics documented:

adaptMetropGibbs ... 2
bayesGeostatExact ... 7
bayesLMConjugate .. 12
bayesLMRef .. 13
BEF.dat ... 15
FBC07.dat .. 15
FORMGMT.dat ... 17
iDist ... 17
mkMvX ... 18
mkSpCov ... 19
NETemp.dat .. 21
adaptMetropGibbs

NYOzone.dat .. 21
pointsInPoly .. 22
spDiag .. 24
spDynLM ... 27
spGLM ... 32
spLM ... 38
spMisalignGLM ... 42
spMisalignLM ... 47
spMvGLM .. 51
spMvLM ... 57
spPredict ... 61
spRecover .. 64
WEF.dat ... 66
Zurich.dat ... 66

Index

adaptMetropGibbs Adaptive Metropolis within Gibbs algorithm

Description

Markov chain Monte Carlo for continuous random vector using an adaptive Metropolis within Gibbs algorithm.

Usage

adaptMetropGibbs(ltd, starting, tuning=1, accept.rate=0.44,
 batch = 1, batch.length=25, report=100,
 verbose=TRUE, ...)

Arguments

ltd an R function that evaluates the log target density of the desired equilibrium distribution of the Markov chain. First argument is the starting value vector of the Markov chain. Pass variables used in the ltd via the ...argument of aMetropGibbs.

starting a real vector of parameter starting values.

tuning a scalar or vector of initial Metropolis tuning values. The vector must be of length(starting). If a scalar is passed then it is expanded to length(starting).

accept.rate a scalar or vector of target Metropolis acceptance rates. The vector must be of length(starting). If a scalar is passed then it is expanded to length(starting).

batch the number of batches.

batch.length the number of sampler iterations in each batch.

report the number of batches between acceptance rate reports.

verbose if TRUE, progress of the sampler is printed to the screen. Otherwise, nothing is printed to the screen.

... currently no additional arguments.
Value

A list with the following tags:

- `p.theta.samples` - a coda object of posterior samples for the parameters.
- `acceptance` - the Metropolis acceptance rate at the end of each batch.
- `ltd` - limited
- `accept.rate` - acceptance rate
- `batch` - batch
- `batch.length` - batch.length
- `proc.time` - the elapsed CPU and wall time (in seconds).

Note

This function is a rework of Rosenthal (2007) with some added niceties.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <sudiptob@biostat.umn.edu>

References

Examples

```r
## Not run:
rmvn <- function(n, mu=0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p))))
    stop("Dimension problem!")
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)*%*%D + rep(mu,rep(n,p)))
}

#########################################################################
#Fit a spatial regression
#########################################################################
set.seed(1)
n <- 50
x <- runif(n, 0, 100)
y <- runif(n, 0, 100)
D <- as.matrix(dist(cbind(x, y)))
```
phi <- 3/50
sigmasq <- 50
tausq <- 20
mu <- 150

s <- (sigmasq*exp(-phi*D))
w <- rmvn(1, rep(0, n), s)
Y <- rmvn(1, rep(mu, n) + w, tausq*diag(n))
X <- as.matrix(rep(1, length(Y)))

##Priors
##IG sigma^2 and tau^2
a.sig <- 2
b.sig <- 100
a.tau <- 2
b.tau <- 100

##Unif phi
a.phi <- 3/100
b.phi <- 3/1

##Functions used to transform phi to continuous support.
logit <- function(theta, a, b){log((theta-Ma)/(b-Mtheta))}
logit.inv <- function(z, a, b){b-(b-a)/(1+exp(z))}

##Metrop. target
target <- function(theta){
 mu.cand <- theta[1]
sigmasq.cand <- exp(theta[2])
tausq.cand <- exp(theta[3])
phi.cand <- logit.inv(theta[4], a.phi, b.phi)

 Sigma <- sigmasq.cand*exp(-phi.cand*D)+tausq.cand*diag(n)
SigmaInv <- chol2inv(chol(Sigma))
logDetSigma <- determinant(Sigma, log=TRUE)$modulus[1]

 out <- {
 #Priors
 -(a.sig+1)*log(sigmasq.cand) - b.sig/sigmasq.cand
 -(a.tau+1)*log(tausq.cand) - b.tau/tausq.cand
 #Jacobians
 +log(sigmasq.cand) + log(tausq.cand)
 +log(phi.cand - a.phi) + log(b.phi -phi.cand)
 #Likelihood
 -0.5*logDetSigma-0.5*(t(Y-X%*%mu.cand)%*%SigmaInv%*%(Y-X%*%mu.cand))
 }

 return(out)
}

##Run a couple chains
n.batch <- 500
batch.length <- 25

inits <- c(0, log(1), log(1), logit(3/10, a.phi, b.phi))
chain.1 <- adaptMetropGibbs(ltd=target, starting=inits,
 batch=n.batch, batch.length=batch.length, report=100)

inits <- c(500, log(100), log(100), logit(3/90, a.phi, b.phi))
chain.2 <- adaptMetropGibbs(ltd=target, starting=inits,
 batch=n.batch, batch.length=batch.length, report=100)

Check out acceptance rate just for fun
plot(mcmc.list(mcmc(chain.1)$acceptance, mcmc(chain.2)$acceptance))

Back transform
chain.1$p.theta.samples[, 2] <- exp(chain.1$p.theta.samples[, 2])
chain.1$p.theta.samples[, 3] <- exp(chain.1$p.theta.samples[, 3])
chain.1$p.theta.samples[, 4] <- 3/logit.inv(chain.1$p.theta.samples[, 4], a.phi, b.phi)

chain.2$p.theta.samples[, 2] <- exp(chain.2$p.theta.samples[, 2])
chain.2$p.theta.samples[, 3] <- exp(chain.2$p.theta.samples[, 3])
chain.2$p.theta.samples[, 4] <- 3/logit.inv(chain.2$p.theta.samples[, 4], a.phi, b.phi)

par.names <- c("mu", "sigma sq", "tau sq", "effective range (-log(0.05)/phi)"
colnames(chain.1$p.theta.samples) <- par.names
colnames(chain.2$p.theta.samples) <- par.names

Discard burn.in and plot and do some convergence diagnostics
chains <- mcmc.list(mcmc(chain.1$p.theta.samples), mcmc(chain.2$p.theta.samples))
plot(window(chains, start=as.integer(0.5*n.batch*batch.length)))

gelman.diag(chains)

Example of fitting a non-linear model
set.seed(1)

Simulate some data.

a <- -0.1 # -Inf < a < Inf
b <- 0.1 # b > 0
c <- -0.2 # c > 0
tau.sq <- 0.1 # tau.sq > 0

fn <- function(a, b, c, x){
a+b*exp(x/c)
}
n <- 200
x <- seq(0, 1, 0.01)
y <- rnorm(length(x), fn(a, b, c, x), sqrt(tau sq))

check out your data
plot(x, y)

###
The log target density
###
Define the log target density used in the Metrop.
lt <- function(theta){

 # extract and transform as needed
 a <- theta[1]
b <- exp(theta[2])
c <- exp(theta[3])
tau sq <- exp(theta[4])

ey hat <- fn(a, b, c, x)

 # likelihood
 log l <- sum(dnorm(y, y hat, sqrt(tau sq), log = TRUE))

 # priors IG on tau sq and normal on a and transformed b, c, d
 log l <- (log l
 - (IG a+1) * log(tau sq) - IG b/tau sq
 + sum(dnorm(theta[1:3], N mu, N v, log = TRUE))
)

 # Jacobian adjustment for tau sq
 log l <- log l + log(tau sq)

 return(log l)
}

###
The rest
###

Priors
IG a <- 2
IG b <- 0.01

N mu <- 0
N v <- 10

theta tuning <- c(0.01, 0.01, 0.005, 0.01)

Run three chains with different starting values
n batch <- 1000
batch length <- 25

theta starting <- c(0, log(0.01), log(0.6), log(0.01))
run.1 <- adaptMetropGibbs(ltd=ltd, starting=theta.starting, tuning=theta.tuning,
batch=n.batch, batch.length=batch.length, report=100)

theta.starting <- c(1.5, log(0.05), log(0.5), log(0.05))
run.2 <- adaptMetropGibbs(ltd=ltd, starting=theta.starting, tuning=theta.tuning,
batch=n.batch, batch.length=batch.length, report=100)

theta.starting <- c(-1.5, log(0.1), log(0.4), log(0.1))
run.3 <- adaptMetropGibbs(ltd=ltd, starting=theta.starting, tuning=theta.tuning,
batch=n.batch, batch.length=batch.length, report=100)

Back transform
samples.1 <- cbind(run.1$p.theta.samples[,1], exp(run.1$p.theta.samples[,2:4]))
samples.2 <- cbind(run.2$p.theta.samples[,1], exp(run.2$p.theta.samples[,2:4]))
samples.3 <- cbind(run.3$p.theta.samples[,1], exp(run.3$p.theta.samples[,2:4]))
samples <- mcmc.list(mcmc(samples.1), mcmc(samples.2), mcmc(samples.3))

Summary
plot(samples, density=FALSE)
gelman.plot(samples)

burn.in <- 5000

fn.pred <- function(theta,x){
 a <- theta[1]
 b <- theta[2]
 c <- theta[3]
 tau.sq <- theta[4]

 rnorm(length(x), fn(a,b,c,x), sqrt(tau.sq))
}

post.curves <- t(apply(samples.1[burn.in:nrow(samples.1),], 1, fn.pred, x))
post.curves.quants <- summary(mcmc(post.curves))$quantiles

plot(x, y, pch=19, xlab="x", ylab="f(x)"
lines(x, post.curves.quants[,1], lty="dashed", col="blue")
lines(x, post.curves.quants[,3])
lines(x, post.curves.quants[,5], lty="dashed", col="blue")

End(Not run)
Description

Given a observation coordinates and fixed semivariogram parameters the bayesGeostatExact function fits a simple Bayesian spatial linear model.

Usage

bayesGeostatExact(formula, data = parent.frame(), n.samples,
 beta.prior.mean, beta.prior.precision,
 coords, cov.model="exponential", phi, nu, alpha,
 sigma sq.prior.shape, sigma sq.prior.rate,
 sp.effects=TRUE, verbose=TRUE, ...)

Arguments

formula for a univariate model, this is a symbolic description of the regression model to be fit. See example below.
data an optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which splm is called.
n.samples the number of posterior samples to collect.
beta.prior.mean \(\beta \) multivariate normal mean vector hyperprior.
beta.prior.precision \(\beta \) multivariate normal precision matrix hyperprior.
coords an \(n \times 2 \) matrix of the observation coordinates in \(R^2 \) (e.g., easting and northing).
cov.model a quoted key word that specifies the covariance function used to model the spatial dependence structure among the observations. Supported covariance model key words are: "exponential", "matern", "spherical", and "gaussian". See below for details.
phi the fixed value of the spatial decay.
nu if cov.model is "matern" then the fixed value of the spatial process smoothness must be specified.
alpha the fixed value of the ratio between the nugget \(\tau^2 \) and partial-sill \(\sigma^2 \) parameters from the specified cov.model.
sigma sq.prior.shape \(\sigma^2 \) (i.e., partial-sill) inverse-Gamma shape hyperprior.
sigma sq.prior.rate \(\sigma^2 \) (i.e., partial-sill) inverse-Gamma 1/scale hyperprior.
sp.effects a logical value indicating if spatial random effects should be recovered.
verbose if TRUE, model specification and progress of the sampler is printed to the screen. Otherwise, nothing is printed to the screen.
... currently no additional arguments.
Value

An object of class bayesGeostatExact, which is a list with the following tags:

- `p.samples` a coda object of posterior samples for the defined parameters.
- `sp.effects` a matrix that holds samples from the posterior distribution of the spatial random effects. The rows of this matrix correspond to the \(n \) point observations and the columns are the posterior samples.
- `args` a list with the initial function arguments.

Author(s)

Sudipto Banerjee <sudiptob@biostat.umn.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

```r
## Not run:

data(FBC07.dat)
Y <- FBC07.dat[1:150, "Y.2"]
coords <- as.matrix(FBC07.dat[1:150, c("coord.X", "coord.Y")])

n.samples <- 500
n = length(Y)
p = 1

phi <- 0.15
nu <- 0.5

beta.prior.mean <- as.matrix(rep(0, times=p))
beta.prior.precision <- matrix(0, nrow=p, ncol=p)

alpha <- 5/5

sigma.sq.prior.shape <- 2.0
sigma.sq.prior.rate <- 5.0

#########################
## Simple linear model with
## the default exponential
## spatial decay function
#########################
set.seed(1)
m.1 <- bayesGeostatExact(Y~1, n.samples=n.samples,
                         beta.prior.mean=beta.prior.mean,
                         beta.prior.precision=beta.prior.precision,
                         coords=coords, phi=phi, alpha=alpha,
                         sigma.sq.prior.shape=sigma.sq.prior.shape,
                         sigma.sq.prior.rate=sigma.sq.prior.rate)
```
print(summary(m.1$p.samples))

##Requires MBA package to
##make surfaces
library(MBA)
par(mfrow=c(1,2))
obs.surf <-
 mba.surf(cbind(coords, Y), no.X=100, no.Y=100, extend=T)$xyz.est
image(obs.surf, xaxs = "r", yaxs = "r", main="Observed response")
points(coords)
contour(obs.surf, add=T)

w.hat <- rowMeans(m.1$sp.effects)
w.surf <-
 mba.surf(cbind(coords, w.hat), no.X=100, no.Y=100, extend=T)$xyz.est
image(w.surf, xaxs = "r", yaxs = "r", main="Estimated random effects")
points(coords)
contour(w.surf, add=T)

##
##Simple linear model with
##the matern spatial decay
##function. Note, nu=0.5 so
##should produce the same
##estimates as m.1
##
set.seed(1)
m.2 <- bayesGeostatExact(Y~1, n.samples=n.samples,
 beta.prior.mean=beta.prior.mean,
 beta.prior.precision=beta.prior.precision,
 coords=coords, cov.model="matern",
 phi=phi, nu=nu, alpha=alpha,
 sigma.sq.prior.shape=sigma.sq.prior.shape,
 sigma.sq.prior.rate=sigma.sq.prior.rate)

print(summary(m.2$p.samples))

##
##This time with the
##spherical just for fun
##
m.3 <- bayesGeostatExact(Y~1, n.samples=n.samples,
 beta.prior.mean=beta.prior.mean,
 beta.prior.precision=beta.prior.precision,
 coords=coords, cov.model="spherical",
 phi=phi, alpha=alpha,
 sigma.sq.prior.shape=sigma.sq.prior.shape,
 sigma.sq.prior.rate=sigma.sq.prior.rate)

print(summary(m.3$p.samples))
n = nrow(formgmt.dat)
phi <- 0.0012
coords <- cbind(formgmt.dat$Longi, FORMGMT.dat$Lat)
coords <- coords*(pi/180)*6378
beta.prior.mean <- rep(0, times=p)
beta.prior.precision <- matrix(0, nrow=p, ncol=p)
alpha <- 1/1.5
sigma.sq.prior.shape <- 2.0
sigma.sq.prior.rate <- 10.0
m.4 <-
bayesGeostatExact(Y~X1+X2+X3+X4, data=FORMGMT.dat, n.samples=n.samples,
beta.prior.mean=beta.prior.mean,
beta.prior.precision=beta.prior.precision,
coords=coords, phi=phi, alpha=alpha,
sigma.sq.prior.shape=sigma.sq.prior.shape,
sigma.sq.prior.rate=sigma.sq.prior.rate)

##Requires MBA package to
##make surfaces
library(MBA)
par(mfrow=c(1,2))
obs.surf <-
mba.surf(cbind(coords, resid(lm(Y~X1+X2+X3+X4, data=FORMGMT.dat))),
no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(obs.surf, xaxs = "r", yaxs = "r", main="Observed response")
points(coords)
contour(obs.surf, add=T)

w.hat <- rowMeans(m.4$sp.effects)
w.surf <-
mba.surf(cbind(coords, w.hat), no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(w.surf, xaxs = "r", yaxs = "r", main="Estimated random effects")
contour(w.surf, add=T)
points(coords, pch=1, cex=1)
bayesLMConjugate

Simple Bayesian linear model via the Normal/inverse-Gamma conjugate

Description

Given an lm object, the bayesLMConjugate function fits a simple Bayesian linear model with Normal and inverse-Gamma priors.

Usage

bayesLMConjugate(formula, data = parent.frame(), n.samples, beta.prior.mean, beta.prior.precision, prior.shape, prior.rate, ...)

Arguments

formula
 for a univariate model, this is a symbolic description of the regression model to be fit. See example below.
data
 an optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which splm is called.
n.samples
 the number of posterior samples to collect.
beta.prior.mean
 \(\beta \) multivariate normal mean vector hyperprior.
beta.prior.precision
 \(\beta \) multivariate normal precision matrix hyperprior.
prior.shape
 \(\tau^2 \) inverse-Gamma shape hyperprior.
prior.rate
 \(\tau^2 \) inverse-Gamma 1/scale hyperprior.
... currently no additional arguments.

Value

An object of class bayesLMConjugate, which is a list with at least the following tag:

p.beta.tauSq.samples
 a coda object of posterior samples for the defined parameters.

Author(s)

Sudipto Banerjee \(<\text{sudiptob@biostat.umn.edu}>\),
Andrew O. Finley \(<\text{finleya@msu.edu}>\)
bayesLMRef

Examples

```r
## Not run:

data(FORMGMT.dat)

n <- nrow(FORMGMT.dat)
p <- 7  ## an intercept and six covariates

n.samples <- 500

## Below we demonstrate the conjugate function in the special case
## with improper priors. The results are the same as for the above,
## up to MC error.
beta.prior.mean <- rep(0, times=p)
beta.prior.precision <- matrix(0, nrow=p, ncol=p)

prior.shape <- -p/2
prior.rate <- 0

m.1 <-
  bayesLMConjugate(Y ~ X1+X2+X3+X4+X5+X6, data = FORMGMT.dat,
  n.samples, beta.prior.mean,
  beta.prior.precision,
  prior.shape, prior.rate)

summary(m.1$p.beta.tauSqr.samples)

## End(Not run)
```

bayesLMRef

| Simple Bayesian linear model with non-informative priors |

Description

Given a `lm` object, the `bayesLMRef` function fits a simple Bayesian linear model with reference (non-informative) priors.

Usage

`bayesLMRef(lm.obj, n.samples, ...)`

Arguments

- `lm.obj` an object returned by `lm`.
- `n.samples` the number of posterior samples to collect.
- `...` currently no additional arguments.
Details

See page 355 in Gelman et al. (2004).

Value

An object of class \texttt{bayesLMRef}, which is a list with at least the following tag:

\texttt{p.beta.tauSq.samples}

a coda object of posterior samples for the defined parameters.

Author(s)

Sudipto Banerjee <sudiptob@biostat.umn.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Examples

```r
## Not run:
set.seed(1)

n <- 100
X <- as.matrix(cbind(1, rnorm(n)))
B <- as.matrix(c(1,5))
tau.sq <- 0.1
y <- rnorm(n, X%*%B, sqrt(tau.sq))

lm.obj <- lm(y ~ X-1)
summary(lm.obj)

##Now with bayesLMRef
n.samples <- 500

m.1 <- bayesLMRef(lm.obj, n.samples)
summary(m.1$p.beta.tauSq.samples)

## End(Not run)
```
BEF.dat
Bartlett Experimental Forest inventory data

Description

Data generated in long-term research studies on the Bartlett Experimental Forest, Bartlett, NH funded by the U.S. Department of Agriculture, Forest Service, Northeastern Research Station.

This dataset holds 1991 and 2002 forest inventory data for 437 points on the BEF.dat. Variables include species specific basal area and biomass; inventory plot coordinates; slope; elevation; and tasseled cap brightness (TC1), greenness (TC2), and wetness (TC3) components from spring, summer, and fall 2002 Landsat images.

Species specific basal area and biomass are recorded as a fraction of totals.

Usage

```r
data(BEF.dat)
```

Format

A data frame containing 437 rows and 208 columns.

Source

BEF.dat inventory data provided by:
Marie-Louise Smith USDA Forest Service Northeastern Research Station `<marielouisesmith@fs.fed.us>`
Additional variables provided by:
Andrew Lister USDA Forest Service Northeastern Research Station `<alister@fs.fed.us>`

FBC07.dat
Synthetic multivariate data with spatial and non-spatial variance structures

Description

The synthetic dataset describes a stationary and isotropic bivariate process. Please refer to the vignette Section 4.2 for specifics.

Usage

```r
data(FBC07.dat)
```

Format

A data frame of 250 rows and 4 columns. Columns 1 and 2 are coordinates and columns 3 and 4 are response variables.
Source

Examples

```r
## Not run:
data(FBC07.dat)
library(geoR)

max <- 40
bins <- 20
pts <- 1:150

vario.1 <- variog(coords=FBC07.dat[pts,1:2], data=FBC07.dat[pts,3],
                   uvec=(seq(0, max, length=bins)))

vario.2 <- variog(coords=FBC07.dat[pts,1:2], data=FBC07.dat[pts,4],
                   uvec=(seq(0, max, length=bins)))

cov.model = "exponential",
minimisation.function = "nls",
weights = "equal"

vario.fit.1 <- variogfit(vario.1, ini.cov.pars=c(5.0, 1.0),
cov.model = "exponential",
minimisation.function = "nls",
weights = "equal")

vario.fit.2 <- variogfit(vario.2, ini.cov.pars=c(5.0, 10.0),
cov.model = "exponential",
minimisation.function = "nls",
weights = "equal")

par(mfrow=c(1,2))

plot(vario.1$u, vario.1$v, axes=FALSE, type = "n",
ylim=c(0,15), xlab="Distance", ylab="Semivariance")
points(vario.1$u, vario.1$v, pch=19, cex=0.5)
axis(1, seq(0, max, 10))
axis(2, seq(0,15,5))
abline(h=vario.fit.1$nugget)
abline(h=vario.fit.1$cov.pars[1]+vario.fit.1$nugget)
abline(v=3/(1/vario.fit.1$cov.pars[2]))
lines(vario.fit.1)

plot(vario.2$u, vario.2$v, axes=FALSE, type = "n",
ylim=c(0,15), xlab="Distance", ylab="")
points(vario.2$u, vario.2$v, pch=19, cex=0.5)
axis(1, seq(0, max, 10))
abline(h=vario.fit.2$nugget)
abline(h=vario.fit.2$cov.pars[1]+vario.fit.2$nugget)
abline(v=3/(1/vario.fit.2$cov.pars[2]))
lines(vario.fit.2)
```
FORMGMT.dat

Description

Data used for illustrations.

Usage

data(FORMGMT.dat)

iDist

Euclidean distance matrix

Description

Computes the inter-site Euclidean distance matrix for one or two sets of points.

Usage

iDist(coords.1, coords.2, ...)

Arguments

coords.1

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>An $n \times p$ matrix with each row corresponding to a point in p dimensional space.</td>
<td></td>
</tr>
</tbody>
</table>

coords.2

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>An $m \times p$ matrix with each row corresponding to a point in p dimensional space.</td>
<td></td>
</tr>
</tbody>
</table>

... Currently no additional arguments.

Value

The $n \times n$ or $n \times m$ inter-site Euclidean distance matrix.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <sudiptob@biostat.umn.edu>,
Examples

```r
## Not run:
n <- 10
p1 <- cbind(runif(n), runif(n))

m <- 5
p2 <- cbind(runif(m), runif(m))
D <- iDist(p1, p2)

## End(Not run)
```

Description

Given \(q \) univariate design matrices, the function \(\text{mkmvX} \) creates a multivariate design matrix suitable for use in \texttt{spPredict}.

Usage

```r
mkmvX(X)
```

Arguments

- \(X \)
 - a list of \(q \) univariate design matrices. The matrices must have the same number of rows (i.e., observations) but may have different number of columns (i.e., regressors).

Value

A multivariate design matrix suitable for use in \texttt{spPredict}.

Author(s)

Andrew O. Finley \(<\text{finleya@msu.edu}>\),
Sudipto Banerjee \(<\text{sudiptob@biostat.umn.edu}>\).

See Also

\texttt{spPredict}
Examples

Not run:
Define some univariate model design matrices
with intercepts.
X.1 <- cbind(rep(1L, 10), matrix(rnorm(50), nrow=10))
X.2 <- cbind(rep(1L, 10), matrix(rnorm(20), nrow=10))
X.3 <- cbind(rep(1L, 10), matrix(rnorm(30), nrow=10))

Make a multivariate design matrix suitable
for use in spPredict.
X.mv <- mkMvX(list(X.1, X.2, X.3))

End(Not run)

mkSpCov

Function for calculating univariate and multivariate covariance matrices

Description

The function `mkSpCov` calculates a spatial covariance matrix given spatial locations and spatial covariance parameters.

Usage

`mkSpCov(coords, K, Psi, theta, cov.model)`

Arguments

- `coords`:

an `n x 2` matrix of the observation coordinates in `R^2` (e.g., easting and northing).

- `K`:

 the `q x q` spatial cross-covariance matrix. For a univariate model this corresponds to the partial sill, `\sigma^2`.

- `Psi`:

 the `q x q` non-spatial covariance matrix. For a univariate model this corresponds to the nugget, `\tau^2`.

- `theta`:

 a vector of `q` spatial decay parameters. If `cov.model` is "matern" then `theta` is a vector of length `2 x q` with the spatial decay parameters in the first `q` elements and the spatial smoothness parameters in the last `q` elements.

- `cov.model`:

 a quoted keyword that specifies the covariance function used to model the spatial dependence structure among the observations. Supported covariance model key words are: "exponential", "matern", "spherical", and "gaussian". See below for details.

- `...`:

 currently no additional arguments.
Details

Covariance functions return the covariance $C(h)$ between a pair locations separated by distance h. The covariance function can be written as a product of a variance parameter σ^2 and a positive definite correlation function $\rho(h)$: $C(h) = \sigma^2 \rho(h)$, see, e.g., Banerjee et al. (2004) p. 27 for more details. The expressions of the correlations functions available in spBayes are given below. More will be added upon request.

For all correlations functions, ϕ is the spatial decay parameter. Some of the correlation functions will have an extra parameter ν, the smoothness parameter. $K_\nu(x)$ denotes the modified Bessel function of the third kind of order ν. See documentation of the function besselK for further details. The following functions are valid for $\phi > 0$ and $\nu > 0$, unless stated otherwise.

gaussian

$$\rho(h) = \exp[-(\phi h)^2]$$

exponential

$$\rho(h) = \exp(-\phi h)$$

matern

$$\rho(h) = \frac{1}{2^{\nu-1}\Gamma(\nu)}(\phi h)^\nu K_\nu(\phi h)$$

spherical

$$\rho(h) = \begin{cases} 1 - 1.5\phi h + 0.5(\phi h)^3, & \text{if } h < \frac{1}{\phi} \\ 0, & \text{otherwise} \end{cases}$$

Value

C the $nq \times nq$ spatial covariance matrix.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <baner009@umn.edu>

Examples

```r
# Not run:
# A bivariate spatial covariance matrix

n <- 2  # number of locations
q <- 2  # number of responses at each location
nltr <- q*(q+1)/2  # number of triangular elements in the cross-covariance matrix
coords <- cbind(runif(n, 0, 1), runif(n, 0, 1))

# spatial decay parameters
theta <- rep(6, q)
```
NETemp.dat

Monthly weather station temperature data across the Northeastern US

Description

Monthly temperature data (Celsius) recorded across the Northeastern US starting in January 2000. Station UTM coordinates and elevation are also included.

Usage

data(NETemp.dat)

Format

A data frame containing 356 rows (weather stations) and 132 columns.

NYOzone.dat

Observations of ozone concentration levels.

Description

These data and subsequent description are drawn from the spTimer package (version 0.7). This data set contains values of daily 8-hour maximum average ozone concentrations (ppb; O3.8HRMAX), maximum temperature (degree Celsius; cMAXTMP), wind speed (knots; WDSP), and relative humidity (RM), obtained from 28 monitoring sites in New York, USA, between July 1 and August 31 in 2006. Each row represents a station and columns hold consecutive daily values.

Usage

data(NYOzone.dat)
Format
Columns for NYdata:

- 1st col = Longitude
- 2nd col = Latitude
- 3rd col = X coordinates in UTM projection
- 4th col = Y coordinates in UTM projection
- 5th col = Ozone July 1 (O3.8HRMAX.1)
- 6th col = Ozone July 2 (O3.8HRMAX.2)
- ...
- 66th col = Ozone August 31 (O3.8HRMAX.62)
- remaining columns organize cMAXTMP, WDSP, and RH identical to the 62 O3.8HRMAX measurements

References

pointsInPoly Finds points in a polygon

Description
Given a polygon and a set of points this function returns the subset of points that are within the polygon.

Usage
pointsInPoly(poly, points, ...)

Arguments

poly an $n \times 2$ matrix of polygon vertices. Matrix columns correspond to vertices’ x and y coordinates, respectively.

points an $m \times 2$ matrix of points. Matrix columns correspond to points’ x and y coordinates, respectively.

... currently no additional arguments.

Details
It is assumed that the polygon is to be closed by joining the last vertex to the first vertex.
Value

If points are found with the polygon, then a vector is returned with elements corresponding to the row indices of points, otherwise NA is returned.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <sudiptob@biostat.umn.edu>,

Examples

```r
## Not run:
## Example 1
points <- cbind(runif(1000, 0, 10), runif(1000, 0, 10))
poly <- cbind(c(1:9,8:1), c(1,2*(5:3),2,-1,17,9,8,2:9))
point.idx <- pointsInPoly(poly, points)
plot(points, pch=19, cex=0.5, xlab="x", ylab="y", col="red")
points(points[point.idx,], pch=19, cex=0.5, col="blue")
polygon(poly)

## Example 2
## A function to partition the domain
tiles <- function(points, x.cnt, y.cnt, tol = 1.0e-10){
  x.min <- min(points[,1])-tol
  x.max <- max(points[,1])+tol
  y.min <- min(points[,2])-tol
  y.max <- max(points[,2])+tol
  x.cnt <- x.cnt+1
  y.cnt <- y.cnt+1
  x <- seq(x.min, x.max, length.out=x.cnt)
y <- seq(y.min, y.max, length.out=y.cnt)
tile.list <- vector("list", (length(y)-1)*(length(x)-1))
  l <- 1
  for(i in 1:(length(y)-1)){
    for(j in 1:(length(x)-1)){
      tile.list[[l]] <- rbind(c(x[j], y[i]),
                              c(x[j+1], y[i]),
                              c(x[j+1], y[i+1]),
                              c(x[j], y[i+1]))
      l <- l + 1
    }
  }
}
```
spDiag

Model fit diagnostics

Description

The function spDiag calculates DIC, GP, GRS, and associated statistics given a spLM, spMvLM, spGLM, or spMvGLM object.

Usage

```
spDiag(sp.obj, start=1, end, thin=1, verbose=TRUE, n.report=100, ...)
```

Arguments

- **sp.obj**: an object returned by spLM, spMvLM, spGLM, or spMvGLM.
- **start**: specifies the first sample included in the computation. The start, end, and thin arguments only apply to spGLM or spMvGLM objects. Sub-sampling for spLM and spMvLM is controlled using spRecover which must be called prior to spDiag.
end specifies the last sample included in the computation. The default is to use all posterior samples in sp.obj. See start argument description.

thin a sample thinning factor. The default of 1 considers all samples between start and end. For example, if thin = 10 then 1 in 10 samples are considered between start and end.

verbose if TRUE calculation progress is printed to the screen; otherwise, nothing is printed to the screen.

n.report the interval to report progress.

Value

A list with some of the following tags:

DIC a matrix holding DIC and associated statistics, see Banerjee et al. (2004) for details.

GP a matrix holding GP and associated statistics, see Gelfand and Ghosh (1998) for details.

GRS a scoring rule, see Equation 27 in Gneiting and Raftery (2007) for details.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <sudiptob@biostat.umn.edu>.

References

Examples

```r
## Not run:
rmvn <- function(n, mu=0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p))))
    stop("Dimension problem!")
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}

set.seed(1)
n <- 100
```
coords <- cbind(runif(n, 0, 1), runif(n, 0, 1))
X <- as.matrix(cbind(1, rnorm(n)))

B <- as.matrix(c(1, 5))
p <- length(B)

sigma.sq <- 2
tau.sq <- 0.1
phi <- 3/0.5

D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0, n), sigma.sq*R)
y <- rnorm(n, X%*%B + w, sqrt(tau.sq))

n.samples <- 1000

starting <- list("phi"=3/0.5, "sigma.sq"=50, "tau.sq"=1)
tuning <- list("phi"=0.1, "sigma.sq"=0.1, "tau.sq"=0.1)

too restrictive of prior on beta
priors.1 <- list("beta.Norm"=list(rep(0, p), diag(1, p)),
 "phi.Unif"=c(3/1, 3/0.1), "sigma.sq.IG"=c(2, 2),
 "tau.sq.IG"=c(2, 0.1))

more reasonable prior for beta
priors.2 <- list("beta.Norm"=list(rep(0, p), diag(1000, p)),
 "phi.Unif"=c(3/1, 3/0.1), "sigma.sq.IG"=c(2, 2),
 "tau.sq.IG"=c(2, 0.1))

cov.model <- "exponential"

n.report <- 500
verbose <- TRUE

m.1 <- spLM(y~X-1, coords=coords, starting=starting,
 tuning=tuning, priors=priors.1, cov.model=cov.model,
 n.samples=n.samples, verbose=verbose, n.report=n.report)

m.2 <- spLM(y~X-1, coords=coords, starting=starting,
 tuning=tuning, priors=priors.2, cov.model=cov.model,
 n.samples=n.samples, verbose=verbose, n.report=n.report)

non-spatial model
m.3 <- spLM(y~X-1, n.samples=n.samples, verbose=verbose, n.report=n.report)

burn.in <- 0.5*n.samples

recover beta and spatial random effects
m.1 <- spRecover(m.1, start=burn.in, verbose=FALSE)
m.2 <- spRecover(m.2, start=burn.in, verbose=FALSE)
spDynLM

Function for fitting univariate Bayesian dynamic space-time regression models

Description

The function spDynLM fits Gaussian univariate Bayesian dynamic space-time regression models for settings where space is viewed as continuous but time is taken to be discrete.

Usage

spDynLM(formula, data = parent.frame(), coords, knots, starting, tuning, priors, cov.model, get.fitted=FALSE, n.samples, verbose=TRUE, n.report=100, ...)

Arguments

formula | a list of \(N_t \) symbolic regression models to be fit. Each model represents a time step. See example below.
data | an optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which spDynLM is called.coords | an \(n \times 2 \) matrix of the observation coordinates in \(\mathbb{R}^2 \) (e.g., easting and northing).starting | a list with each tag corresponding to a parameter name. Valid tags are beta, sigma_sq, tau_sq, phi, nu, and sigma_eta. The value portion of each tag is the parameter’s starting value.knots | either a \(m \times 2 \) matrix of the predictive process knot coordinates in \(\mathbb{R}^2 \) (e.g., easting and northing) or a vector of length two or three with the first and second elements recording the number of columns and rows in the desired knot grid. The third, optional, element sets the offset of the outermost knots from the extent of the coords.tuning | a list with each tag corresponding to a parameter name. Valid tags are phi and nu. The value portion of each tag defines the variance of the Metropolis sampler Normal proposal distribution.priors | a list with tags beta.\(\theta \).norm, sigma_sq.ig, tau_sq.ig, phi.unif, nu.unif, and sigma_eta.iw. Variance parameters, sigma_sq and tau_sq, are assumed to follow an inverse-Gamma distribution, whereas the spatial decay phi and smoothness nu parameters are assumed to follow Uniform distributions. The beta.\(\theta \).norm is a multivariate Normal distribution with hyperparameters passed
as a list of length two with the first and second elements corresponding to the mean vector and positive definite covariance matrix, respectively. The hyperparameters of the inverse-Wishart, sigma.etaNiW, are passed as a list of length two, with the first and second elements corresponding to the df and $p \times p$ scale matrix, respectively. The inverse-Gamma hyperparameters are passed in a list with two vectors that hold the shape and scale, respectively. The Uniform hyperparameters are passed in a list with two vectors that hold the lower and upper support values, respectively.

cov.model a quoted keyword that specifies the covariance function used to model the spatial dependence structure among the observations. Supported covariance model keywords are: "exponential", "matern", "spherical", and "gaussian". See below for details.

get.fitted if TRUE, posterior predicted and fitted values are collected. Note, posterior predicted samples are only collected for those \(y_t(s) \) that are NA.

n.samples the number of MCMC iterations.

verbose if TRUE, model specification and progress of the sampler is printed to the screen. Otherwise, nothing is printed to the screen.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.

Details

Suppose, \(y_t(s) \) denotes the observation at location \(s \) and time \(t \). We model \(y_t(s) \) through a measurement equation that provides a regression specification with a space-time varying intercept and serially and spatially uncorrelated zero-centered Gaussian disturbances as measurement error \(\epsilon_t(s) \). Next a transition equation introduces a \(p \times 1 \) coefficient vector, say \(\beta_t \), which is a purely temporal component (i.e., time-varying regression parameters), and a spatio-temporal component \(u_t(s) \). Both these are generated through transition equations, capturing their Markovian dependence in time. While the transition equation of the purely temporal component is akin to usual state-space modeling, the spatio-temporal component is generated using Gaussian spatial processes. The overall model is written as

\[
y_t(s) = x_t(s)'\beta_t + u_t(s) + \epsilon_t(s), t = 1, 2, \ldots, N_t
\]

\[
\epsilon_t(s) \sim N(0, \tau^2_t)
\]

\[
\beta_t = \beta_{t-1} + \eta_t; \eta_t \sim N(0, \Sigma_\eta)
\]

\[
u_t(s) = u_{t-1}(s) + w_t(s); w_t(s) \sim GP(0, C_t(\cdot, \theta_t))\]

Here \(x_t(s) \) is a \(p \times 1 \) vector of predictors and \(\beta_t \) is a \(p \times 1 \) vector of coefficients. In addition to an intercept, \(x_t(s) \) can include location specific variables useful for explaining the variability in \(y_t(s) \). The \(GP(0, C_t(\cdot, \theta_t)) \) denotes a spatial Gaussian process with covariance function \(C_t(\cdot, \theta_t) \). We specify \(C_t(s_1, s_2; \theta_t) = \sigma^2_t \rho(s_1, s_2; \phi_t) \), where \(\theta_t = \{\sigma^2_t, \phi_t, \nu_t\} \) and \(\rho(\cdot; \phi) \) is a correlation...
function with \(\phi \) controlling the correlation decay and \(\sigma_t^2 \) represents the spatial variance component. The spatial smoothness parameter, \(\nu \), is used if the Matern spatial correlation function is chosen. We further assume \(\beta_0 \sim N(m_0, \Sigma_0) \) and \(u_0(s) = 0 \), which completes the prior specifications leading to a well-identified Bayesian hierarchical model and also yield reasonable dependence structures.

Value

An object of class `spDynLM`, which is a list with the following tags:

- `coords` the \(n \times 2 \) matrix specified by `coords`.
- `p.theta.samples` a coda object of posterior samples for \(\tau_t^2, \sigma_t^2, \phi_t, \nu_t \).
- `p.beta.0.samples` a coda object of posterior samples for \(\beta \) at \(t = 0 \).
- `p.beta.samples` a coda object of posterior samples for \(\beta_t \).
- `p.sigma.eta.samples` a coda object of posterior samples for \(\Sigma_\eta \).
- `p.u.samples` a coda object of posterior samples for spatio-temporal random effects \(u \). Samples are over the columns and time steps increase in blocks of \(n \) down the columns, e.g., the first \(n \) rows correspond to locations 1, 2, \ldots, \(n \) in \(t = 1 \) and the last \(n \) rows correspond to locations 1, 2, \ldots, \(n \) in \(t = N_t \).
- `p.y.samples` a coda object of posterior samples for \(y_t(s) \). If \(y_t(s) \) is specified as `NA` the `p.y.samples` hold the associated posterior predictive samples. Samples are over the columns and time steps increase in blocks of \(n \) down the columns, e.g., the first \(n \) rows correspond to locations 1, 2, \ldots, \(n \) in \(t = 1 \) and the last \(n \) rows correspond to locations 1, 2, \ldots, \(n \) in \(t = N_t \).

The return object might include additional data used for subsequent prediction and/or model fit evaluation.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <baner009@umn.edu>

References

See Also

- `spLM`
Examples

Not run:

```r
data("NETemp.dat")
ne.temp <- NETemp.dat

set.seed(1)

## take a chunk of New England
ne.temp <- ne.temp[ne.temp[, "UTMX"] > 5500000 & ne.temp[, "UTMY"] > 3000000,]

## subset first 2 years (Jan 2000 - Dec 2002)
y.t <- ne.temp[,4:27]
N.t <- ncol(y.t) ## number of months
n <- nrow(y.t) ## number of observation per months

## add some missing observations to illustrate prediction
miss <- sample(1:N.t, 10)
holdout.station.id <- 5
y.t.holdout <- y.t[holdout.station.id, miss]
y.t[holdout.station.id, miss] <- NA

## scale to km
coords <- as.matrix(ne.temp[, c("UTMX", "UTMY")]/1000)
max.d <- max(idist(coords))

## set starting and priors
p <- 2 # number of regression parameters in each month

starting <- list("beta"=rep(0, N.t*p), "phi"=rep(3/(0.5*max.d), N.t),
    "sigma.sq"=rep(2, N.t), "tau.sq"=rep(1, N.t),
    "sigma.eta"=diag(rep(0.01, p)))

## tuning

priors <- list("beta,0, Norm"=list(rep(0, p), diag(1000, p)),
    "phi.Unif"=list(rep(3/(0.9*max.d), N.t), rep(3/(0.05*max.d), N.t)),
    "sigma.sq.IG"=list(rep(2, N.t), rep(10, N.t)),
    "tau.sq.IG"=list(rep(2, N.t), rep(5, N.t)),
    "sigma.eta.IW"=list(2, diag(0.001, p)))

## make symbolic model formula statement for each month
mods <- lapply(paste(colnames(y.t), 'elev', sep=' - '), as.formula)

n.samples <- 2000

m.1 <- spDynLM(mods, data=cbind(y.t, ne.temp[, "elev", drop=FALSE]),
    coords=coords, starting=starting, tuning=tuning, priors=priors,
    get.fitted =TRUE, cov.model="exponential", n.samples=n.samples, n.report=25)

burn.in <- floor(0.75*n.samples)

quant <- function(x)(quantile(x, prob=c(0.5, 0.025, 0.975)))
beta <- apply(m.1$p.beta.samples[burn.in:n.samples,], 2, quant)
beta.0 <- beta[,grep("Intercept", colnames(beta))]
beta.1 <- beta[,grep("elev", colnames(beta))]

plot(m.1$p.beta.0.samples)

par(mfrow=c(2,1))
plot(1:N.t, beta.0[1,], pch=19, cex=0.5, xlab="months", ylab="beta.0", ylim=range(beta.0))
arrows(1:N.t, beta.0[1,], 1:N.t, beta.0[3,], length=0.02, angle=90)
arrows(1:N.t, beta.0[1,], 1:N.t, beta.0[2,], length=0.02, angle=90)

plot(1:N.t, beta.1[1,], pch=19, cex=0.5, xlab="months", ylab="beta.1", ylim=range(beta.1))
arrows(1:N.t, beta.1[1,], 1:N.t, beta.1[3,], length=0.02, angle=90)
arrows(1:N.t, beta.1[1,], 1:N.t, beta.1[2,], length=0.02, angle=90)

theta <- apply(m.1$p.theta.samples[burn.in:n.samples,], 2, quant)
sigma.sq <- theta[,grep("sigma.sq", colnames(theta))]
tau.sq <- theta[,grep("tau.sq", colnames(theta))]
phi <- theta[,grep("phi", colnames(theta))]

par(mfrow=c(3,1))
plot(1:N.t, sigma.sq[1,], pch=19, cex=0.5, xlab="months", ylab="sigma.sq", ylim=range(sigma.sq))
arrows(1:N.t, sigma.sq[1,], 1:N.t, sigma.sq[3,], length=0.02, angle=90)
arrows(1:N.t, sigma.sq[1,], 1:N.t, sigma.sq[2,], length=0.02, angle=90)

plot(1:N.t, tau.sq[1,], pch=19, cex=0.5, xlab="months", ylab="tau.sq", ylim=range(tau.sq))
arrows(1:N.t, tau.sq[1,], 1:N.t, tau.sq[3,], length=0.02, angle=90)
arrows(1:N.t, tau.sq[1,], 1:N.t, tau.sq[2,], length=0.02, angle=90)

plot(1:N.t, 3/phi[1,], pch=19, cex=0.5, xlab="months", ylab="eff. range (km)", ylim=range(3/phi))
arrows(1:N.t, 3/phi[1,], 1:N.t, 3/phi[3,], length=0.02, angle=90)
arrows(1:N.t, 3/phi[1,], 1:N.t, 3/phi[2,], length=0.02, angle=90)

y.hat <- apply(m.1$p.y.samples[,burn.in:n.samples], 1, quant)
y.hat.med <- matrix(y.hat[1,], ncol=N.t)
y.hat.up <- matrix(y.hat[3,], ncol=N.t)
y.hat.low <- matrix(y.hat[2,], ncol=N.t)

y.obs <- as.vector(as.matrix(y.t[-holdout.station.id, -miss]))
y.obs.hat.med <- as.vector(y.hat.med[-holdout.station.id, -miss])
y.obs.hat.up <- as.vector(y.hat.up[-holdout.station.id, -miss])
y.obs.hat.low <- as.vector(y.hat.low[-holdout.station.id, -miss])

y.ho <- as.matrix(y.t.holdout)
y.ho.hat.med <- as.vector(y.hat.med[holdout.station.id, miss])
y.ho.hat.up <- as.vector(y.hat.up[holdout.station.id, miss])
y.ho.hat.low <- as.vector(y.hat.low[holdout.station.id, miss])

par(mfrow=c(2,1))
plot(y.obs, y.obs.hat.med, pch=19, cex=0.5, xlab="observed",
ylab="fitted", main="Observed vs. fitted")
arrows(y.obs, y.obs.hat.med, y.obs, y.obs.hat.up, length=0.02, angle=90)
spGLM

Function for fitting univariate Bayesian generalized linear spatial regression models

Description

The function spGLM fits univariate Bayesian generalized linear spatial regression models. Given a set of knots, spGLM will also fit a predictive process model (see references below).

Usage

spGLM(formula, family="binomial", weights, data = parent.frame(),
coordinates, knots, starting, tuning, priors, cov.model,
amcmc, n.samples, verbose=TRUE,
n.report=100, ...)

Arguments

formula a symbolic description of the regression model to be fit. See example below.
family currently only supports binomial and poisson data using the logit and log link functions, respectively.
weights an optional vector of weights to be used in the fitting process. Weights correspond to number of trials and offset for each location for the binomial and poisson family, respectively.

data an optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which spGLM is called.

coordinates an n × 2 matrix of the observation coordinates in R² (e.g., easting and northing).
knots either a m × 2 matrix of the predictive process knot coordinates in R² (e.g., easting and northing) or a vector of length two or three with the first and second elements recording the number of columns and rows in the desired knot grid. The third, optional, element sets the offset of the outermost knots from the extent of the coordinates.
starting a list with each tag corresponding to a parameter name. Valid tags are beta, sigma.sq, phi, nu, and w. The value portion of each tag is the parameter’s starting value. If the predictive process is used then w must be of length m; otherwise, it must be of length n. Alternatively, w can be set as a scalar, in which case the value is repeated.

tuning a list with each tag corresponding to a parameter name. Valid tags are beta, sigma.sq, phi, nu, and w. The value portion of each tag defines the variance of the Metropolis sampler Normal proposal distribution.

The tuning value for beta can be a vector of length p (where p is the number of regression coefficients) or, if an adaptive MCMC is not used, i.e., amcmc is not specified, the lower-triangle of the $p \times p$ Cholesky square-root of the desired proposal covariance matrix. If the predictive process is used then w must be of length m; otherwise, it must be of length n. Alternatively, w can be set as a scalar, in which case the value is repeated.

priors a list with each tag corresponding to a parameter name. Valid tags are sigma.sq.ig, phi.unif, nu.unif, beta.norm, and beta.flat. Variance parameter sigma.sq is assumed to follow an inverse-Gamma distribution, whereas the spatial decay phi and smoothness nu parameters are assumed to follow Uniform distributions. The hyperparameters of the inverse-Gamma are passed as a vector of length two, with the first and second elements corresponding to the shape and scale, respectively. The hyperparameters of the Uniform are also passed as a vector of length two with the first and second elements corresponding to the lower and upper support, respectively. If the regression coefficients are each assumed to follow a Normal distribution, i.e., beta.norm, then mean and variance hyperparameters are passed as the first and second list elements, respectively. If beta is assumed flat then no arguments are passed. The default is a flat prior.

cov.model a quoted keyword that specifies the covariance function used to model the spatial dependence structure among the observations. Supported covariance model key words are: “exponential”, “matern”, “spherical”, and “gaussian”. See below for details.

amcmc a list with tags n.batch, batch.length, and accept.rate. Specifying this argument invokes an adaptive MCMC sampler, see Roberts and Rosenthal (2007) for an explanation.

n.samples the number of MCMC iterations. This argument is ignored if amcmc is specified.

verbose if TRUE, model specification and progress of the sampler is printed to the screen. Otherwise, nothing is printed to the screen.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.

Details

If a binomial model is specified the response vector is the number of successful trials at each location and weights is the total number of trials at each location.

For a poisson specification, the weights vector is the count offset, e.g., population, at each location. This differs from the glm offset argument which is passed as the log of this value.

A non-spatial model is fit when coords is not specified. See example below.
Value

An object of class spGLM, which is a list with the following tags:

- `coords` the \( n \times 2 \) matrix specified by `coords`.
- `knot.coords` the \( m \times 2 \) matrix as specified by `knots`.
- `p.beta.theta.samples` a coda object of posterior samples for the defined parameters.
- `acceptance` the Metropolis sampler acceptance rate. If `amcmc` is used then this will be a matrix of each parameter’s acceptance rate at the end of each batch. Otherwise, the sampler is a Metropolis with a joint proposal of all parameters.
- `acceptance.w` if this is a non-predictive process model and `amcmc` is used then this will be a matrix of the Metropolis sampler acceptance rate for each location’s spatial random effect.
- `acceptance.w.knots` if this is a predictive process model and `amcmc` is used then this will be a matrix of the Metropolis sampler acceptance rate for each knot’s spatial random effect.
- `p.w.knots.samples` a matrix that holds samples from the posterior distribution of the knots’ spatial random effects. The rows of this matrix correspond to the \( m \) knot locations and the columns are the posterior samples. This is only returned if a predictive process model is used.
- `p.w.samples` a matrix that holds samples from the posterior distribution of the locations’ spatial random effects. The rows of this matrix correspond to the \( n \) point observations and the columns are the posterior samples.

The return object might include additional data used for subsequent prediction and/or model fit evaluation.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <baner009@umn.edu>

References


spGLM

See Also

spMvGLM

Examples

```r
Not run:
library(MBA)

set.seed(1)

rmvn <- function(n, mu=0, V = matrix(1)){
 p <- length(mu)
 if(any(is.na(match(dim(V),p))))
 stop("Dimension problem!")
 D <- chol(V)
 t(matrix(rnorm(n*p), ncol=p) %% D + rep(mu,rep(n,p)))
}

###
Spatial binomial
###

Generate binary data
coords <- as.matrix(expand.grid(seq(0,100,length.out=8), seq(0,100,length.out=8)))
n <- nrow(coords)

phi <- 3/50
sigma.sq <- 2

R <- sigma.sq*exp(-phi*as.matrix(dist(coords)))
w <- rmvn(1, rep(0,n), R)

x <- as.matrix(rep(1,n))
beta <- 0.1
p <- 1/(1+exp(-(x%%beta+w)))

weights <- rep(1, n)
weights[coords[,1]>mean(coords[,1])] <- 10

y <- rbinom(n, size=weights, prob=p)

Collect samples
fit <- glm((y/weights)~x-1, weights=weights, family="binomial")
beta.starting <- coefficients(fit)
beta.tuning <- t(chol(vcov(fit)))

n.batch <- 200
batch.length <- 50
n.samples <- n.batch*batch.length

m.1 <- spGLM(y-1, family="binomial", coords=coords, weights=weights, starting=list("beta"=beta.starting, "phi"=0.06,"sigma.sq"=1, "w"=0),
```

```
tuning=list("beta"=beta.tuning, "phi"=0.5, "sigma.sq"=0.5, "w"=0.5),
priors=list("beta.Normal"=list(0, 10), "phi.Unif"=c(0.03, 0.3), "sigma.sq.Unif"=c(2, 1)),
amcmc=list("n.batch"=n.batch, "batch.length"=batch.length, "accept.rate"=0.43),
cov.model="exponential", verbose=TRUE, n.report=10)

burn.in <- 0.9*n.samples
sub.samps <- burn.in:n.samples

print(summary(window(m.1$p.beta.theta.samples, start=burn.in)))

beta.hat <- m.1$p.beta.theta.samples[sub.samps,"(Intercept)"]
w.hat <- m.1$p.w.samples[,sub.samps]
p.hat <- 1/(1+exp(-(x%*%beta.hat+w.hat)))
y.hat <- apply(p.hat, 2, function(x){rbinom(n, size=weights, prob=p)})

y.hat.mu <- apply(y.hat, 1, mean)
y.hat.var <- apply(y.hat, 1, var)

##Take a look
par(mfrow=c(1,2))
surf <- mba.surf(cbind(coords,y.hat.mu),no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(surf, main="Interpolated mean of posterior rate\n(observed rate")
contour(surf, add=TRUE)
text(coords, label=paste("\(\cdot\),y,\)",sep=""))

surf <- mba.surf(cbind(coords,y.hat.var),no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(surf, main="Interpolated variance of posterior rate\n(observed #
of trials")
contour(surf, add=TRUE)
text(coords, label=paste("\(\cdot\),weights,\)",sep=""))

##
#Spatial poisson
##
#Generate count data
set.seed(1)

n <- 100
coords <- cbind(runif(n,1,100),runif(n,1,100))
phi <- 3/50
sigma.sq <- 2
R <- sigma.sq*exp(-phi*as.matrix(dist(coords)))
w <- rmvn(1, rep(0,n), R)
x <- as.matrix(rep(1,n))
beta <- 0.1
y <- rpois(n, exp(x%*%beta*w))
spGLM

```r
# Collect samples
beta.starting <- coefficients(glm(y~x-1, family="poisson"))
beta.tuning <- t(chol(vcov(glm(y~x-1, family="poisson"))))

n.batch <- 500
batch.length <- 50
n.samples <- n.batch*batch.length

# Note tuning list is now optional
m.1 <- spGLM(y~1, family="poisson", coords=coords,
             starting=list("beta"=beta.starting, "phi"=0.06,"sigma_sq"=1, "w"=0),
             tuning=list("beta"=0.1, "phi"=0.5, "sigma_sq"=0.5, "w"=0.5),
             priors=list("beta.Flat", "phi.Unif"=c(0.03, 0.3), "sigma_sq.IG"=c(2, 1)),
             amcmc=list("n.batch"=n.batch, "batch.length"=batch.length, "accept.rate"=0.43),
             cov.model="exponential", verbose=TRUE, n.report=10)

# Just for fun check out the progression of the acceptance
# as it moves to 43% (same can be seen for the random spatial effects).
plot(mcmc(t(m.1$acceptance)), density=FALSE, smooth=FALSE)

# Now parameter summaries, etc.
burn.in <- 0.9*n.samples
sub.samps <- burn.in:n.samples

m.1$p.samples[,"phi"] <- 3/m.1$p.samples[,"phi"]

plot(m.1$p.beta.theta.samples)
print(summary(window(m.1$p.beta.theta.samples, start=burn.in)))

beta.hat <- m.1$p.beta.theta.samples[sub.samps,"(Intercept)"]
w.hat <- m.1$p.w.samples[,sub.samps]

y.hat <- apply(exp(xEbeta.hatKw.hatIL RL function(xI{rpois(nL xI}I, 2, function(x){rpois(n, x)})

y.hat.mu <- apply(y.hat, 1, mean)

# Take a look
par(mfrow=c(1,2))
surf <- mba.surf(cbind(coords,y),no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(surf, main="Observed counts")
contour(surf, add=TRUE)
text(coords, labels=y, cex=1)

surf <- mba.surf(cbind(coords,y.hat.mu),no.X=100, no.Y=100, extend=TRUE)$xyz.est
image(surf, main="Fitted counts")
contour(surf, add=TRUE)
text(coords, labels=round(y.hat.mu,0), cex=1)

# End(Not run)
```
The function spLM fits Gaussian univariate Bayesian spatial regression models. Given a set of knots, spLM will also fit a predictive process model (see references below).

Usage

```
spLM(formula, data = parent.frame(), coords, knots,
     starting, tuning, priors, cov.model,
     modified.pp = TRUE, amcmc, n.samples,
     verbose=TRUE, n.report=100, ...
)
```

Arguments

- **formula**: a symbolic description of the regression model to be fit. See example below.
- **data**: an optional data frame containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which spLM is called.
- **coords**: an \(n \times 2 \) matrix of the observation coordinates in \(R^2 \) (e.g., easting and northing).
- **knots**: either a \(m \times 2 \) matrix of the predictive process knot coordinates in \(R^2 \) (e.g., easting and northing) or a vector of length two or three with the first and second elements recording the number of columns and rows in the desired knot grid. The third, optional, element sets the offset of the outermost knots from the extent of the coords.
- **starting**: a list with each tag corresponding to a parameter name. Valid tags are beta, sigma.sq, tau.sq, phi, and nu. The value portion of each tag is the parameter's starting value.
- **tuning**: a list with each tag corresponding to a parameter name. Valid tags are sigma.sq, tau.sq, phi, and nu. The value portion of each tag defines the variance of each element of the Metropolis sampler Normal proposal distribution.
- **priors**: a list with each tag corresponding to a parameter name. Valid tags are sigma.sq.ig, tau.sq.ig, phi.unif, nu.unif, beta.norm, and beta.flat. Variance parameters, sigma.sq and tau.sq, are assumed to follow an inverse-Gamma distribution, whereas the spatial decay phi and smoothness nu parameters are assumed to follow Uniform distributions. The hyperparameters of the inverse-Gamma are passed as a vector of length two, with the first and second elements corresponding to the \textit{shape} and \textit{scale}, respectively. The hyperparameters of the Uniform are also passed as a vector of length two with the first and second elements corresponding to the lower and upper support, respectively. If the regression coefficients, i.e., beta vector, are assumed to follow a multivariate Normal distribution then pass the hyperparameters as a list of length two with the first and
second elements corresponding to the mean vector and positive definite covariance matrix, respectively. If \(\beta \) is assumed flat then no arguments are passed. The default is a flat prior.

- **cov.model**
 a quoted keyword that specifies the covariance function used to model the spatial dependence structure among the observations. Supported covariance model keywords are: "exponential", "matern", "spherical", and "gaussian". See below for details.

- **modified.pp**
 a logical value indicating if the modified predictive process should be used (see references below for details). Note, if a predictive process model is not used (i.e., knots is not specified) then this argument is ignored.

- **amcmc**
 a list with tags `n.batch`, `batch.length`, and `accept.rate`. Specifying this argument invokes an adaptive MCMC sampler, see Roberts and Rosenthal (2007) for an explanation.

- **n.samples**
 the number of MCMC iterations. This argument is ignored if amcmc is specified.

- **verbose**
 if TRUE, model specification and progress of the sampler is printed to the screen. Otherwise, nothing is printed to the screen.

- **n.report**
 the interval to report Metropolis sampler acceptance and MCMC progress.

... currently no additional arguments.

Details

Model parameters can be fixed at their starting values by setting their tuning values to zero.

The no nugget model is specified by removing `tau_sq` from the starting list.

Value

An object of class `spLM`, which is a list with the following tags:

- **coords**
 the \(n \times 2 \) matrix specified by `coords`.

- **knot.coords**
 the \(m \times 2 \) matrix as specified by `knots`.

- **p.theta.samples**
 a coda object of posterior samples for the defined parameters.

- **acceptance**
 the Metropolis sampling acceptance percent. Reported at `batch.length` or `n.report` intervals for amcmc specified and non-specified, respectively.

The return object might include additional data used for subsequent prediction and/or model fit evaluation.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <baner009@umn.edu>
References

See Also

spMvLM

Examples

```r
## Not run:
rmvn <- function(n, mu=0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p))))
    stop("Dimension problem!")
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)*V + rep(mu,rep(n,p)))
}

set.seed(1)

n <- 100
coords <- cbind(runif(n,0,1), runif(n,0,1))
X <- as.matrix(cbind(1, rnorm(n)))
B <- as.matrix(c(1,5))
p <- length(B)

sigma.sq <- 2
tau.sq <- 0.1
phi <- 3/0.5

D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0,n), sigma.sq*R)
y <- rnorm(n, X*XB + w, sqrt(tau.sq))

n.samples <- 2000

starting <- list("phi"=3/0.5, "sigma.sq"=50, "tau.sq"=1)
```
tuning <- list("phi"=0.1, "sigma_sq"=0.1, "tau_sq"=0.1)
priors.1 <- list("beta.Norm"=list(rep(0,p), diag(1000,p)),
 "phi.Unif"=c(3/1, 3/9), "sigma_sq.IG"=c(2, 2),
 "tau_sq.IG"=c(2, 0.1))
priors.2 <- list("beta.Flat", "phi.Unif"=c(3/1, 3/9),
 "sigma_sq.IG"=c(2, 2), "tau_sq.IG"=c(2, 0.1))

cov.model <- "exponential"

n.report <- 500
verbose <- TRUE

m.1 <- splm(y~x-1, coords=coords, starting=start, tuning=tuning, priors=priors.1, cov.model=cov.model,
 n.samples=n.samples, verbose=verbose, n.report=n.report)
m.2 <- splm(y~x-1, coords=coords, starting=start, tuning=tuning, priors=priors.2, cov.model=cov.model,
 n.samples=n.samples, verbose=verbose, n.report=n.report)

burn.in <- 0.5*n.samples

recover beta and spatial random effects
m.1 <- spRecover(m.1, start=burn.in, verbose=FALSE)
m.2 <- spRecover(m.2, start=burn.in, verbose=FALSE)

round(summary(m.1$theta.recover.samples)$quantiles[,c(3,1,5)],2)
round(summary(m.2$theta.recover.samples)$quantiles[,c(3,1,5)],2)

plot(w, m.1$w.summary[,1], xlab="Observed w", ylab="Fitted w",
 xlim=range(w), ylim=range(m.1$w.summary), main="Spatial random effects")

Predictive process model

m.1 <- splm(y~x-1, coords=coords, knots=c(6,6,0.1), starting=start, tuning=tuning, priors=priors.1, cov.model=cov.model,
spMisalignGLM

Function for fitting multivariate generalized linear Bayesian spatial regression models to misaligned data

Description

The function spMisalignGLM fits Gaussian multivariate Bayesian generalized linear spatial regression models to misaligned data.

Usage

spMisalignGLM(formula, family="binomial", weights, data = parent.frame(), coords, starting, tuning, priors, cov.model, amcmc, n.samples, verbose=TRUE, n.report=100, ...)

Arguments

- **formula**: a list of q symbolic regression models to be fit. See example below.
- **family**: currently only supports binomial and poisson data using the logit and log link functions, respectively.
- **weights**: an optional list of weight vectors associated with each model in the formula list. Weights correspond to number of trials and offset for each location for the binomial and poisson family, respectively.
- **data**: an optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which spMisalignGLM is called.
- **coords**: a list of q $n_i \times 2$ matrices of the observation coordinates in R^2 (e.g., easting and northing) where $i = (1, 2, \ldots, q)$.

Example:

```r
m.2 <- spLM(y~X-1, coords=coords, knots=c(6,6,0.1), starting=starting, tuning=tuning, priors=priors.2, cov.model=cov.model, n.samples=n.samples, verbose=verbose, n.report=n.report)

burn.in <- 0.5*n.samples

round(summary(window(m.1$p.beta.samples, start=burn.in))$quantiles[,c(3,1,5)],2)
round(summary(window(m.2$p.beta.samples, start=burn.in))$quantiles[,c(3,1,5)],2)

round(summary(window(m.1$p.theta.samples, start=burn.in))$quantiles[,c(3,1,5)],2)
round(summary(window(m.2$p.theta.samples, start=burn.in))$quantiles[,c(3,1,5)],2)
```

End(Not run)
starting

A list with corresponding tags to A, phi, and nu. The value portion of each tag is a
vector that holds the parameter’s starting values. A is of length \(\frac{q(q+1)}{2} \) and holds
the lower-triangle elements in column major ordering of the Cholesky square
root of the spatial cross-covariance matrix \(\tilde{K} = AA' \). phi and nu are of length q.

tuning

A list with tags A, phi, and nu. The value portion of each tag defines the variance
of the Metropolis sampler Normal proposal distribution. A is of length \(\frac{q(q+1)}{2} \)
and phi and nu are of length q.

priors

A list with each tag corresponding to a parameter name. Valid tags are beta.flat,
beta.norm, K.iw, phi.unif, and nu.unif. If the regression coefficients are
each assumed to follow a Normal distribution, i.e., beta.norm, then mean and
variance hyperparameters are passed as the first and second list elements, re-
spectively. If beta is assumed flat then no arguments are passed. The default is
a flat prior. The spatial cross-covariance matrix \(\tilde{K} = AA' \) is assumed to follow
an inverse-Wishart distribution, whereas the spatial decay phi and smoothness
nu parameters are assumed to follow Uniform distributions. The hyperpara-
ters of the inverse-Wishart are passed as a list of length two, with the first and
second elements corresponding to the \(df \) and \(q \times q \) scale
matrix, respectively. The hyperparameters of the Uniform are also passed as a list of vectors with
the first and second list elements corresponding to the lower and upper support,
respectively.

cov.model

A quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian". See
below for details.

amcmc

A list with tags n.batch, batch.length, and accept.rate. Specifying this
argument invokes an adaptive MCMC sampler see Roberts and Rosenthal (2007)
for an explanation.

n.samples

The number of MCMC iterations. This argument is ignored if amcmc is specified.

verbose

If TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report

The interval to report Metropolis acceptance and MCMC progress.

... currently no additional arguments.

Details

If a binomial model is specified the response vector is the number of successful trials at each
location and weights is the total number of trials at each location.

For a Poisson specification, the weights vector is the count offset, e.g., population, at each loca-
tion. This differs from the glm offset argument which is passed as the log of this value.

Value

An object of class spMisalignGLM, which is a list with the following tags:

p.beta.theta.samples

A coda object of posterior samples for the defined parameters.
acceptance the Metropolis sampler acceptance rate. If amcmc is used then this will be a matrix of each parameter’s acceptance rate at the end of each batch. Otherwise, the sampler is a Metropolis with a joint proposal of all parameters.

acceptance.w if amcmc is used then this will be a matrix of the Metropolis sampler acceptance rate for each location’s spatial random effect.

p.w.samples a matrix that holds samples from the posterior distribution of the locations’ spatial random effects. Posterior samples are organized with the first response variable \(n_1 \) locations held in rows 1,\ldots,\(n_1 \) rows, then the next response variable samples held in the \((n_1 + 1),\ldots,(n_1 + n_2)\), etc.

The return object might include additional data used for subsequent prediction and/or model fit evaluation.

Author(s)
Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <baner009@umn.edu>

References

See Also
spMvGLM spMisalignLM

Examples
```r
## Not run:
rmvn <- function(n, mu=0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p)))){stop("Dimension problem!"))
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
set.seed(1)
```
##generate some data
n <- 100 #number of locations
q <- 3 #number of outcomes at each location
nltr <- q*(q+1)/2 #number of triangular elements in the cross-covariance matrix
cords <- cbind(runif(n,0,1), runif(n,0,1))

##parameters for generating a multivariate spatial GP covariance matrix
theta <- rep(3/0.5,q) #spatial decay
A <- matrix(0,q,q)
A[lower.tri(A,TRUE)] <- c(1,1,-1,1,0.5,0.25)
K <- A%*%t(A)
K #spatial cross-covariance

##covariate portion of the mean
x.a <- cbind(1, rnorm(n), rnorm(n))
x.b <- cbind(1, rnorm(n))
x.c <- cbind(1, rnorm(n))
x <- mkMvX(list(x.a, x.b, x.c))

B.1 <- c(1,-1)
B.2 <- c(-1,1)
B.3 <- c(-1,-1)
B <- c(B.1, B.2, B.3)

y <- rpois(nrow(C), exp(x*%*%B*w))

##subsample to make spatially misaligned data
sub.1 <- 1:50
y.1 <- y.a[sub.1]
w.1 <- w.a[sub.1]
cords.1 <- cords[sub.1,]
x.1 <- x.a[sub.1,]

sub.2 <- 25:75
y.2 <- y.b[sub.2]
w.2 <- w.b[sub.2]
cords.2 <- coords[sub.2,]
x.2 <- x.b[sub.2,]
sub.3 <- 50:100
y.3 <- y.c[sub.3]
w.3 <- w.c[sub.3]
coords.3 <- coords[sub.3]
x.3 <- x.c[sub.3]

call spMisalignGLM
q <- 3
A.starting <- diag(1,q)[lower.tri(diag(1,q), TRUE)]

n.batch <- 200
batch.length <- 25
n.samples <- n.batch*batch.length

starting <- list("beta"=rep(0,length(B)), "phi"=rep(3/0.5,q), "A"=A.starting, "w"=0)
tuning <- list("beta"=rep(0.1,length(B)), "phi"=rep(1,q), "A"=rep(0.1,length(A.starting)), "w"=1)
priors <- list("phi.Unif"=list(rep(3/0.75,q), rep(3/0.25,q)),
 "K.IW"=list(q+1, diag(0.1,q)), rep(0.1,q))
m.1 <- spMisalignGLM(list(y.1-x.1-1, y.2-x.2-1, y.3-x.3-1), family="poisson",
 coords=list(coords.1, coords.2, coords.3),
 starting=starting, tuning=tuning, priors=priors,
 amcmc=list("n.batch"=n.batch, "batch.length"=batch.length, "accept.rate"=0.43),
 cov.model="exponential", n.report=10)

burn.in <- floor(0.75*n.samples)

plot(m.1$p.beta.theta.samples, density=FALSE)

predict for all locations, i.e., observed and not observed
out <- spPredict(m.1, start=burn.in, thin=10, pred.covars=list(x.a, x.b, x.c),
 pred.coords=list(coords, coords, coords))

summary and check
quants <- function(x)(quantile(x, prob=c(0.05,0.025,0.975)))
y.hat <- apply(out$p.predictive.samples, 1, quants)

unstack and plot
y.a.hat <- y.hat[,1:n]
y.b.hat <- y.hat[, (n+1):(2*n)]
y.c.hat <- y.hat[, (2*n+1):(3*n)]

par(mfrow=c(1,3))
plot(y.a ,y.a.hat[,1], xlab="Observed y.a", ylab="Fitted & predicted y.a")
plot(y.b, y.b.hat[,1], xlab="Observed y.b", ylab="Fitted & predicted y.b")
plot(y.c, y.c.hat[,1], xlab="Observed y.c", ylab="Fitted & predicted y.c")
spMisalignLM Function for fitting multivariate Bayesian spatial regression models to misaligned data

Description

The function spMisalignLM fits Gaussian multivariate Bayesian spatial regression models to misaligned data.

Usage

spMisalignLM(formula, data = parent.frame(), coords,
starting, tuning, priors, cov.model,
amcmc, n.samples, verbose=TRUE, n.report=100, ...)

Arguments

formula a list of q symbolic regression models to be fit. See example below.

data an optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which spMisalignLM is called.

coords a list of $q n_i \times 2$ matrices of the observation coordinates in R^2 (e.g., easting and northing) where $i = (1, 2, \ldots, q)$.

starting a list with tags corresponding to A, ϕ, ν, and Ψ. The value portion of each tag is a vector that holds the parameter’s starting values.

A is of length $\frac{q(q+1)}{2}$ and holds the lower-triangle elements in column major ordering of the Cholesky square root of the spatial cross-covariance matrix.

ϕ and ν are of length q. The vector of residual variances Ψ is also of length q.

tuning a list with tags A, ϕ, ν, and Ψ. The value portion of each tag defines the variance of the Metropolis sampler Normal proposal distribution. A is of length $\frac{q(q+1)}{2}$ and Ψ, ϕ, and ν are of length q.

priors a list with tags beta.flat, K.iw, Ψ.ig, phi.unif and nu.unif. The hyperparameters of the inverse-Wishart for the cross-covariance matrix $K = AA'$ are passed as a list of length two, with the first and second elements corresponding to the df and $q \times q$ scale matrix, respectively. The inverse-Gamma hyperparameters for the non-spatial residual variances are specified as a list Ψ.ig of length two with the first and second list elements consisting of vectors of the $q \text{ shape}$ and scale hyperparameters, respectively. The hyperparameters of the Uniform ϕ.unif, and ν.unif are also passed as a list of vectors with the first and second list elements corresponding to the lower and upper support, respectively.
spMisalignLM

cov.model a quoted keyword that specifies the covariance function used to model the spatial dependence structure among the observations. Supported covariance model keywords are: "exponential", "matern", "spherical", and "gaussian". See below for details.

amcmc a list with tags n.batch, batch.length, and accept.rate. Specifying this argument invokes an adaptive MCMC sampler see Roberts and Rosenthal (2007) for an explanation.

n.samples the number of MCMC iterations. This argument is ignored if amcmc is specified.

verbose if TRUE, model specification and progress of the sampler is printed to the screen. Otherwise, nothing is printed to the screen.

n.report the interval to report Metropolis acceptance and MCMC progress.

... currently no additional arguments.

Details

Model parameters can be fixed at their starting values by setting their tuning values to zero.

Value

An object of class spMisalignLM, which is a list with the following tags:

p.theta.samples a coda object of posterior samples for the defined parameters.

acceptance the Metropolis sampling acceptance percent. Reported at batch.length or n.report intervals for amcmc specified and non-specified, respectively

The return object might include additional data used for subsequent prediction and/or model fit evaluation.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <baner009@umn.edu>

References

See Also

spMvLMspMisalignGLM

Examples

```r
## Not run:
rmvn <- function(n, mu=0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p)))){stop("Dimension problem!"))
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p))%*%D + rep(mu,rep(n,p))
}

set.seed(1)

generate some data
n <- 100 #number of locations
q <- 3 #number of outcomes at each location
nltr <- q*(q+1)/2 #number of triangular elements in the cross-covariance matrix
coords <- cbind(runif(n,0,1), runif(n,0,1))

parameters for generating a multivariate spatial GP covariance matrix
theta <- rep(3/0.5,q) #spatial decay

A <- matrix(0,q,q)
A[lower.tri(A,TRUE)] <- c(1,1,-1,1,0.5,0.25)
K <- A%*%t(A)
K #spatial cross-covariance
cov2cor(K) #spatial cross-correlation

C <- mkSpCov(coords, K, diag(0,q), theta, cov.model="exponential")

w <- rmvn(1, rep(0,nrow(C)), C) #spatial random effects

w.a <- w[seq(1,length(w),q)]
w.b <- w[seq(2,length(w),q)]
w.c <- w[seq(3,length(w),q)]

#covariate portion of the mean
x.a <- cbind(1, rnorm(n))
x.b <- cbind(1, rnorm(n))
x.c <- cbind(1, rnorm(n))
x <- mkMvX(list(x.a, x.b, x.c))

B.1 <- c(1,-1)
B.2 <- c(-1,1)
B.3 <- c(-1,-1)
B <- c(B.1, B.2, B.3)

Psi <- c(0.1, 0.1, 0.1) #non-spatial residual variance, i.e., nugget
```
```r
y <- rnorm(n=q, x=S+x+B+w, rep(sqrt(Psi),n))

y.a <- y[seq(1,length(y),q)]
y.b <- y[seq(2,length(y),q)]
y.c <- y[seq(3,length(y),q)]

yN1 <- yNa{subN1}
wN1 <- wNa{subN1}
coordsN1 <- coords\[subN1L]
xN1 <- x.a\[sub.1L]

yN2 <- 25:75
y.N2 <- yNb{sub.N2}
w.N2 <- wNb{sub.N2}
coords.N2 <- coords\[sub.N2L]
x.N2 <- x.b\[sub.2L]

yN3 <- 50:100
yN3 <- yNc{sub.N3}
wN3 <- wNc{sub.N3}
coordsN3 <- coords\[sub.N3L]
xN3 <- x.c\[sub.3L]

mN1 <- spMisalignLM(list(yN1~xN1M1L yNR~xNRM1L yNS~xNSM1IL coords\[list(coordsN1L coordsNRL coordsNSIL)
starting=starting, tuning=tuning, priors=priors, nNsamples=5000)

burn.in <- floor(0.75*nNsamplesL

plot(mN1\$p.theta.samples, density=FALSE)

mN1 <- spRecover(mN1, start=burn.in)

round(summary(mN1\$p.theta.recover.samples)\$quantiles[,c(3,1,5)],2)

round(summary(mN1\$p.beta.recover.samples)\$quantiles[,c(3,1,5)],2)

out <- spPredict(mN1, start=burn.in, thin=10, pred.covars=list(x.a, x.b, x.c),
```
spMvGLM

Function for fitting multivariate Bayesian generalized linear spatial regression models

Description

The function spMvGLM fits multivariate Bayesian generalized linear spatial regression models. Given a set of knots, spMvGLM will also fit a predictive process model (see references below).

Usage

spMvGLM(formula, family="binomial", weights, data = parent.frame(), coords, knots, starting, tuning, priors, cov.model, amcmc, n.samples, verbose=TRUE, n.report=100, ...)
Arguments

- **formula**

- **family**
 currently only supports binomial and poisson data using the logit and log link functions, respectively.

- **weights**
 an optional \(n \times q \) matrix of weights to be used in the fitting process. The order of the columns correspond to the univariate models in the formula list. Weights correspond to number of trials and offset for each location for the binomial and poisson family, respectively.

- **data**
 an optional data frame containing the variables in the model. If not found in data, the variables are taken from `environment(formula)` typically the environment from which `spMvGLM` is called.

- **coords**
 an \(n \times 2 \) matrix of the observation coordinates in \(R^2 \) (e.g., easting and northing).

- **knots**
 either a \(m \times 2 \) matrix of the predictive process knot coordinates in \(R^2 \) (e.g., easting and northing) or a vector of length two or three with the first and second elements recording the number of columns and rows in the desired knot grid. The third, optional, element sets the offset of the outermost knots from the extent of the coords.

- **starting**
 a list with each tag corresponding to a parameter name. Valid tags are **beta**, \(A \), \(\phi \), \(\nu \), and \(w \). The value portion of each tag is a vector that holds the parameter’s starting values and are of length \(p \) for **beta** (where \(p \) is the total number of regression coefficients in the multivariate model), \(\frac{q(q+1)}{2} \) for \(A \), and \(q \) for **phi** and **nu**. Here, \(A \) holds the the lower-triangle elements in column major ordering of the Cholesky square root of the spatial cross-covariance matrix. If the predictive process is used then \(w \) must be of length \(qn \); otherwise, it must be of length \(qn \). Alternatively, \(w \) can be set as a scalar, in which case the value is repeated.

- **tuning**
 a list with tags **beta**, \(A \), \(\phi \), \(\nu \), and \(w \). The value portion of each tag defines the variance of the Metropolis sampler Normal proposal distribution. The value portion of these tags is of length \(p \) for **beta**, \(\frac{q(q+1)}{2} \) for \(A \), and \(q \) for **phi** and **nu**. Here, \(A \) holds the tuning values corresponding to the lower-triangle elements in column major ordering of the Cholesky square root of the spatial cross-covariance matrix. If the predictive process is used then \(w \) must be of length \(qn \); otherwise, it must be of length \(qn \). Alternatively, \(w \) can be set as a scalar, in which case the value is repeated. The tuning value for **beta** can be a vector of length \(p \) or, if an adaptive MCMC is not used, i.e., `amcmc` is not specified, the lower-triangle of the \(p \times p \) Cholesky square-root of the desired proposal covariance matrix.

- **priors**
 a list with each tag corresponding to a parameter name. Valid tags are **beta.flat**, **beta.norm**, **K.iw**, **phi.unif**, and **nu.unif**. If the regression coefficients are each assumed to follow a Normal distribution, i.e., **beta.norm**, then mean and variance hyperparameters are passed as the first and second list elements, respectively. If **beta** is assumed flat then no arguments are passed. The default is a flat prior. The spatial cross-covariance matrix \(K \) is assumed to follow an inverse-Wishart distribution, whereas the spatial decay \(\phi \) and smoothness \(\nu \) parameters are assumed to follow Uniform distributions. The hyperparameters of the inverse-Wishart are passed as a list of length two, with the first and second
elements corresponding to the df and \(q \times q \) scale matrix, respectively. The hyper-
parameters of the Uniform are also passed as a list of vectors with the first and
second list elements corresponding to the lower and upper support, respectively.

cov.model

a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian". See
below for details.

amcmc

a list with tags n.batch, batch.length, and accept.rate. Specifying this
argument invokes an adaptive MCMC sampler see Roberts and Rosenthal (2007)
for an explanation.

n.samples

the number of MCMC iterations. This argument is ignored if amcmc is specified.

verbose

if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report

the interval to report Metropolis sampler acceptance and MCMC progress.

... currently no additional arguments.

Details

If a binomial model is specified the response vector is the number of successful trials at each
location and weights is the total number of trials at each location.

For a poisson specification, the weights vector is the count offset, e.g., population, at each loca-
tion. This differs from the glm offset argument which is passed as the log of this value.

A non-spatial model is fit when coords is not specified. See example below.

Value

An object of class spMvGLM, which is a list with the following tags:

coords

the \(n \times 2 \) matrix specified by coords.

knot.coords

the \(m \times 2 \) matrix as specified by knots.

p.beta.theta.samples

a coda object of posterior samples for the defined parameters.

acceptance

the Metropolis sampler acceptance rate. If amcmc is used then this will be a
matrix of each parameter’s acceptance rate at the end of each batch. Otherwise,
the sampler is a Metropolis with a joint proposal of all parameters.

acceptance.w

if this is a non-predictive process model and amcmc is used then this will be a
matrix of the Metropolis sampler acceptance rate for each location’s spatial
random effect.

acceptance.w.knots

if this is a predictive process model and amcmc is used then this will be a matrix
of the Metropolis sampler acceptance rate for each knot’s spatial random effect.

p.w.knots.samples

a matrix that holds samples from the posterior distribution of the knots’ spatial
random effects. The rows of this matrix correspond to the \(q \times m \) knot locations
and the columns are the posterior samples. This is only returned if a predictive
process model is used.
p.w. samples a matrix that holds samples from the posterior distribution of the locations’ spatial random effects. The rows of this matrix correspond to the $q \times n$ point observations and the columns are the posterior samples.

The return object might include additional data used for subsequent prediction and/or model fit evaluation.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <baner09@umn.edu>

References

See Also

spGLM

Examples

```r
## Not run:
library(MBA)

##Some useful functions
rmvn <- function(n, mu=0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(dim(V,p)))){stop("Dimension problem!"))}
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}

set.seed(1)

##Generate some data
```
n <- 25 # number of locations
q <- 2 # number of outcomes at each location
nltr <- q*(q+1)/2 # number of triangular elements in the cross-covariance matrix
coords <- cbind(runif(nL1I1, runif(nL1II1))

Parameters for the bivariate spatial random effects
theta <- rep(3/0.5, q)
A <- matrix(0, q, q)
A[lower.tri(A, TRUE)] <- c(1,-1,0.25)
K <- A%*%t(A)

Psi <- diag(0, q)
C <- mkSpCov(coords, K, Psi, theta, cov.model="exponential")
w <- rmvn(1, rep(0, nrow(C)), C)
w.1 <- w[seq(1, length(w), q)]
w.2 <- w[seq(2, length(w), q)]

Covariate portion of the mean
x.1 <- cbind(1, rnorm(n))
x.2 <- cbind(1, rnorm(n))
x <- mkMvX(list(x.1, x.2))
B.1 <- c(1,-1)
B.2 <- c(-1,1)
B <- c(B.1, B.2)

weight <- 10 # i.e., trials
p <- 1/(1+exp(-x%*%B+w))
y <- rbinom(n*q, size=rep(weight, n*q), prob=p)
y.1 <- y[seq(1, length(y), q)]
y.2 <- y[seq(2, length(y), q)]

Call spMVLM
fit <- glm(y/weight~x-1, weights=rep(weight, n*q), family="binomial")
beta.starting <- coefficients(fit)
beta.tuning <- t(chol(vcov(fit)))

A.starting <- diag(1, q)[lower.tri(diag(1, q), TRUE)]
n.batch <- 100
batch.length <- 50
n.samples <- n.batch*batch.length

starting <- list("beta"=beta.starting, "phi"=rep(3/0.5, q), "A"=A.starting, "w"=0)
tuning <- list("beta"=beta.tuning, "phi"=rep(1, q), "A"=rep(0.1, length(A.starting)),
 "w"=0.5)
priors <- list("beta.Flat", "phi.Unif"=list(rep(3/0.75, q), rep(3/0.25, q)),
 "A.Flat"=list(0, 1), "w.Flat"=list(0, 1))
"K.IW" = list(q + 1, diag(0.1, q))

m.1 <- spMvGLM(list(y.1 ~ x.1-1, y.2 ~ x.2-1),
 coords = coords, weights = matrix(weight, n.q),
 starting = starting, tuning = tuning, priors = priors,
 amcmc = list("n.batch" = n.batch, "batch.length" = batch.length, "accept.rate" = 0.43),
 cov.model = "exponential", n.report = 25)

burn.in <- 0.75 * n.samples
sub.samps <- burn.in : n.samples

print(summary(window(m.1$p.beta.theta.samples, start = burn.in))$quantiles[, c(3, 1, 5)])

beta.hat <- t(m.1$p.beta.theta.samples[sub.samps, 1:length(B)])
w.hat <- m.1$p.w.samples[, sub.samps]
p.hat <- 1/(1 + exp(-(x * x * beta.hat * w.hat)))
y.hat <- apply(p.hat, 2, function(x) (rbinom(n * q, size = rep(weight, n * q), prob = p)))
y.hat.mu <- apply(y.hat, 1, mean)

Unstack to get each response variable fitted values
y.hat.mu.1 <- y.hat.mu[seq(1, length(y.hat.mu), q)]
y.hat.mu.2 <- y.hat.mu[seq(2, length(y.hat.mu), q)]

Take a look
par(mfrow = c(2, 2))
surf <- mba.surf(cbind(coords, y.1), no.X = 100, no.Y = 100, extend = TRUE)$xyz.est
image(surf, main = "Observed y.1 positive trials")
contour(surf, add = TRUE)
points(coords)
zlim <- range(surf[["z"]], na.rm = TRUE)

surf <- mba.surf(cbind(coords, y.hat.mu.1), no.X = 100, no.Y = 100, extend = TRUE)$xyz.est
image(surf, zlim = zlim, main = "Fitted y.1 positive trials")
contour(surf, add = TRUE)
points(coords)

surf <- mba.surf(cbind(coords, y.2), no.X = 100, no.Y = 100, extend = TRUE)$xyz.est
image(surf, main = "Observed y.2 positive trials")
contour(surf, add = TRUE)
points(coords)
zlim <- range(surf[["z"]], na.rm = TRUE)

surf <- mba.surf(cbind(coords, y.hat.mu.2), no.X = 100, no.Y = 100, extend = TRUE)$xyz.est
image(surf, zlim = zlim, main = "Fitted y.2 positive trials")
contour(surf, add = TRUE)
points(coords)

End(Not run)
spMvLM Function for fitting multivariate Bayesian spatial regression models

Description

The function spMvLM fits Gaussian multivariate Bayesian spatial regression models. Given a set of knots, spMvLM will also fit a predictive process model (see references below).

Usage

```r
spMvLM(formula, data = parent.frame(), coords, knots,
       starting, tuning, priors, cov.model,
       modified.pp = TRUE, amcmc, n.samples,
       verbose=TRUE, n.report=100, ...)
```

Arguments

- **formula** a list of \(q \) symbolic regression model descriptions to be fit. See example below.
- **data** an optional data frame containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which spMvLM is called.
- **coords** an \(n \times 2 \) matrix of the observation coordinates in \(R^2 \) (e.g., easting and northing).
- **knots** either a \(m \times 2 \) matrix of the predictive process knot coordinates in \(R^2 \) (e.g., easting and northing) or a vector of length two or three with the first and second elements recording the number of columns and rows in the desired knot grid. The third, optional, element sets the offset of the outermost knots from the extent of the coords.
- **starting** a list with tags corresponding to `beta`, `a`, `phi`, and `nu`. Depending on the specification of the non-spatial residual, tags are `L` or `Psi` for a block diagonal or diagonal covariance matrix, respectively. The value portion of each tag is a vector that holds the parameter’s starting values and are of length `p` for `beta` (where `p` is the total number of regression coefficients in the multivariate model), \(\frac{q(q+1)}{2} \) for `Psi`, and \(q \) for `a` and `phi`, and `nu`. Here, `a` and `L` hold the lower-triangle elements in column major ordering of the Cholesky square root of the spatial and non-spatial cross-covariance matrices, respectively.
- **tuning** a list with tags `a`, `phi`, and `nu`. Depending on the specification of the non-spatial residual, tags are `L` or `Psi` for a block diagonal or diagonal covariance matrix, respectively. The value portion of each tag defines the variance of the Metropolis sampler Normal proposal distribution. For `a` and `L` the vectors are of length \(\frac{q(q+1)}{2} \) and \(q \) for `Psi`, `phi`, and `nu`.
- **priors** a list with tags `beta.flat`, `beta.norm`, `K.iw`, `Psi.iw`, `Psi.ig`, `phi.unif`, and `nu.unif`. If the regression coefficients, i.e., `beta` vector, are assumed to follow a multivariate Normal distribution then pass the hyperparameters as a list of
length two with the first and second elements corresponding to the mean vector and positive definite covariance matrix, respectively. If beta is assumed flat then no arguments are passed. The default is a flat prior. Use Psi.iw if the non-spatial residual covariance matrix is assumed block diagonal. Otherwise if the non-spatial residual covariance matrix is assumed diagonal then each of the q diagonal element are assumed to follow an inverse-Gamma in which case use Psi.ig. The hyperparameters of the inverse-Wishart, i.e., for cross-covariance matrices AA^T and LL^T are passed as a list of length two, with the first and second elements corresponding to the df and $q \times q$ scale matrix, respectively. If Psi.ig is specified, the inverse-Gamma hyperparameters of the diagonal variance elements are pass using a list of length two with the first and second list elements consisting of vectors of the q shape and scale hyperparameters, respectively. The hyperparameters of the Uniform phi.unif, and nu.unif are also passed as a list of vectors with the first and second list elements corresponding to the lower and upper support, respectively.

cov.model
a quoted keyword that specifies the covariance function used to model the spatial dependence structure among the observations. Supported covariance model key words are: "exponential", "matern", "spherical", and "gaussian". See below for details.

modified.pp
a logical value indicating if the modified predictive process should be used (see references below for details). Note, if a predictive process model is not used (i.e., knots is not specified) then this argument is ignored.

amcmc
a list with tags n.batch, batch.length, and accept.rate. Specifying this argument invokes an adaptive MCMC sampler see Roberts and Rosenthal (2007) for an explanation.

n.samples
the number of MCMC iterations. This argument is ignored if amcmc is specified.

verbose
if TRUE, model specification and progress of the sampler is printed to the screen. Otherwise, nothing is printed to the screen.

n.report
the interval to report Metropolis acceptance and MCMC progress.

... currently no additional arguments.

Details
Model parameters can be fixed at their starting values by setting their tuning values to zero. The no nugget model is specified by removing Psi and L from the starting list.

Value
An object of class spMvLM, which is a list with the following tags:

- **coords** the $n \times 2$ matrix specified by coords.
- **knot.coords** the $m \times 2$ matrix as specified by knots.
- **p.theta.samples** a coda object of posterior samples for the defined parameters.
- **acceptance** the Metropolis sampling acceptance percent. Reported at batch.length or n.report intervals for amcmc specified and non-specified, respectively.
The return object might include additional data used for subsequent prediction and/or model fit evaluation.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <baner009@umn.edu>

References

See Also

spLM

Examples

```r
## Not run:
rmvn <- function(n, mu=0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p)))(stop("Dimension problem!"))
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}
set.seed(1)

##Generate some data
n <- 25 ##number of locations
q <- 2 ##number of outcomes at each location
nltr <- q*(q+1)/2 ##number of triangular elements in the cross-covariance matrix
coords <- cbind(runif(n,0,1), runif(n,0,1))

##Parameters for the bivariate spatial random effects
theta <- rep(3/0.5,q)
```

A <- matrix(0,q,q)
A[lower.tri(A,TRUE)] <- c(-1,0.25)
K <- A%*%t(A)

Psi <- diag(0,q)

C <- mkSpCov(coords, K, Psi, theta, cov.model="exponential")

w <- rmvn(1, rep(0,nrow(C)), C)

w.1 <- w[seq(1,length(w),q)]
w.2 <- w[seq(2,length(w),q)]

Covariate portion of the mean
x.1 <- cbind(1, rnorm(n))
x.2 <- cbind(1, rnorm(n))
x <- mkMxX(list(x.1, x.2))

B.1 <- c(1,-1)
B.2 <- c(-1,1)
B <- c(B.1, B.2)

Psi <- diag(c(0.1, 0.5))

y <- rnorm(n+q, x%*%B+w, diag(n+q%*%Psi))

y.1 <- y[seq(1,length(y),q)]
y.2 <- y[seq(2,length(y),q)]

Call spMvLM
A.starting <- diag(1,q)[lower.tri(diag(1,q), TRUE)]
n.samples <- 1000

starting <- list("phi"=rep(3/0.5,q), "A"=A.starting, "Psi"=rep(1,q))
tuning <- list("phi"=rep(1,q), "A"=rep(0.01,length(A.starting)), "Psi"=rep(0.01,q))
priors <- list("beta.Flat", "phi.Unif"=list(rep(3/0.75,q), rep(3/0.25,q)),
"K.IW"=list(q+1, diag(0.1,q)), "Psi.ig"=list(c(2,2), c(0.1,0.1)))

m.1 <- spMvLM(list(y.1~x.1-1, y.2~x.2-1),
 coords=coords, starting=starting, tuning=tuning, priors=priors,
 n.samples=n.samples, cov.model="exponential", n.report=100)

burn.in <- 0.75*n.samples

m.1 <- spRecover(m.1, start=burn.in)

round(summary(m.1$p.theta.recover.samples)$quantiles[,c(3,1,5)],2)
round(summary(m.1$p.beta.recover.samples)$quantiles[,c(3,1,5)],2)

m.1.w.hat <- summary(mcmc(t(m.1$p.w.recover.samples)))$quantiles[,c(3,1,5)]
m.1.w.1.hat <- m.1.w.hat[seq(1, nrow(m.1.w.hat), q),]
m.1.w.2.hat <- m.1.w.hat[seq(2, nrow(m.1.w.hat), q),]
spPredict

Function for new locations given a model object

Description

The function `spPredict` collects posterior predictive samples for a set of new locations given a `spLM`, `spMVLM`, `spGLM`, `spMVGLM`, `spMisalignLM`, `spMisalignGLM`, `bayesGeostatExact`, `bayesLMConjugate` or `bayesLMRef` object.

Usage

```r
spPredict(sp.obj, pred.coords, pred.covars, start=1, end, thin=1,
          verbose=TRUE, n.report=100, ...)
```

Arguments

- `sp.obj`: an object returned by `spLM`, `spMVLM`, `spGLM`, `spMVGLM`, `spMisalignLM`, `spMisalignGLM`, `bayesGeostatExact`, `bayesLMConjugate` or `bayesLMRef`.
- `pred.coords`: for `spLM`, `spMVLM`, `spGLM`, `spMVGLM`, and `bayesGeostatExact` `pred.coords` is a \(n \times 2\) matrix of \(n\) prediction location coordinates in \(R^2\) (e.g., easting and northing). For `spMisalignLM` and `spMisalignGLM` `pred.coords` is a list of \(q\) \(n_i \times 2\) matrices of prediction location coordinates where \(i = (1,2,\ldots,q)\).
- `pred.covars`: for `spLM`, `spMVLM`, `spGLM`, `spMVGLM`, `bayesGeostatExact`, `bayesLMConjugate` and `bayesLMRef` `pred.covars` is a \(n \times p\) design matrix associated with the new locations. If this is a multivariate prediction defined by \(q\) models, i.e., for `spMVLM` or `spMVGLM`, the multivariate design matrix can be created by passing a list of the \(q\) univariate design matrices to the `mkMvX` function. For `spMisalignLM` and `spMisalignGLM` `pred.covars` is a list of \(q\) \(n_i \times p_i\) design matrices where \(i = (1,2,\ldots,q)\).
- `start`: specifies the first sample included in the composition sampling.
- `end`: specifies the last sample included in the composition. The default is to use all posterior samples in `sp.obj`.

```r
par(mfrow=c(1,2))
plot(w.1, m.1.w.1.hat[,1], xlab="Observed w.1", ylab="Fitted w.1",
     xlim=range(w), ylim=range(m.1.w.hat), main="Spatial random effects w.1")
arrows(w.1, m.1.w.1.hat[,1], w.1, m.1.w.1.hat[,2], length=0.02, angle=90)
arrows(w.1, m.1.w.1.hat[,1], w.1, m.1.w.1.hat[,3], length=0.02, angle=90)
lines(range(w), range(w))

plot(w.2, m.1.w.2.hat[,1], xlab="Observed w.2", ylab="Fitted w.2",
     xlim=range(w), ylim=range(m.1.w.hat), main="Spatial random effects w.2")
arrows(w.2, m.1.w.2.hat[,1], w.2, m.1.w.2.hat[,2], length=0.02, angle=90)
arrows(w.2, m.1.w.2.hat[,1], w.2, m.1.w.2.hat[,3], length=0.02, angle=90)
lines(range(w), range(w))

## End(Not run)
```
thinn a sample thinning factor. The default of 1 considers all samples between start and end. For example, if thin = 10 then 1 in 10 samples are considered between start and end.

verbose if TRUE, model specification and progress of the sampler is printed to the screen. Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

... currently no additional arguments.

Value

p.y.predictive.samples

a matrix that holds the response variable(s) posterior predictive samples. For multivariate models spMVLM or spMVGLM the rows of this matrix correspond to the predicted locations and the columns are the posterior predictive samples.

If prediction is for q response variables the p.y.predictive.samples matrix has qn rows. The predictions for locations are held in rows 1:q,(q+1):2q,...,((n−1)q+1):qn (i.e., the samples for the first location’s q response variables are in rows 1:q, second location in rows (q+1):2q, etc.). For spMisalignLM and spMisalignGLM the posterior predictive samples are organized differently in p.y.predictive.samples with the first response variable n1 locations held in rows 1,...,n1 rows, then the next response variable samples held in the (n1+1),...,((n1+n2), etc.

For spGLM and spMisalignGLM the p.y.predictive.samples matrix holds posterior predictive samples \(\frac{1}{1+\exp(-x(s)\beta-w(s))} \) and \(\exp(x(s)\beta+w(s)) \) for family binomial and poisson, respectively. Here s indexes the prediction location, \(\beta \) is the vector of regression coefficients, and \(w \) is the associated spatial random spatial effect. These values can be fed directly into rbinom or rpois to generate the realization from the respective distribution.

p.w.predictive.samples

a matrix, organized the same as p.y.predictive.samples, that holds the spatial random effects posterior predictive samples.

Author(s)

Andrew O. Finley <finleya@msu.edu>, Sudipto Banerjee <baner009@umn.edu>

References

\texttt{spPredict}

\textbf{Examples}

```R
## Not run:
rmvn <- function(n, mu=0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p))))
    stop("Dimension problem!")
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}

set.seed(1)

n <- 200
coords <- cbind(runif(n,0,1), runif(n,0,1))
X <- as.matrix(cbind(1, rnorm(n)))

B <- as.matrix(c(1,5))
p <- length(B)
sigma.sq <- 10
tau.sq <- 0.01
phi <- 3/0.5

D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0,n), sigma.sq*R)
y <- rnorm(n, X*X%*%B + w, sqrt(tau.sq))

# partition the data for out of sample prediction
mod <- 1:100
y.mod <- y[mod]
X.mod <- X[mod]
coords.mod <- coords[mod]

n.samples <- 1000

starting <- list("phi"=3/0.5, "sigma.sq"=50, "tau.sq"=1)
tuning <- list("phi"=0.1, "sigma.sq"=0.1, "tau.sq"=0.1)
priors <- list("beta.Flat", "phi.Unif"="c(3/1, 3/0.1)
  "sigma.sq.IG"="c(2, 5), "tau.sq.IG"="c(2, 0.01))
cov.model <- "exponential"

m.1 <- splm(y.mod~X.mod-1, coords=coords.mod, starting=starting, tuning=tuning, priors=priors, cov.model=cov.model, n.samples=n.samples)

m.1.pred <- spPredict(m.1, pred.covars=X, pred.coords=coords, start=0.5*n.samples)
y.hat <- apply(m.1.pred$p.y.predictive.samples, 1, mean)

quant <- function(x){quantile(x, prob=c(0.025, 0.5, 0.975))}
y.hat <- apply(m.1.pred$p.y.predictive.samples, 1, quant)
```
plot(y, y.hat[2,], pch=19, cex=0.5, xlab="observed y", ylab="predicted y")
arrows(y[-mod], y.hat[2,-mod], y[-mod], y.hat[1,-mod], angle=90, length=0.05)
arrows(y[-mod], y.hat[2,-mod], y[-mod], y.hat[3,-mod], angle=90, length=0.05)

End (Not run)

spRecover

Function for recovering regression coefficients and spatial random effects for \texttt{splm}, \texttt{spmvlm}, and \texttt{spMisalignLM} using composition sampling.

Description

Function for recovering regression coefficients and spatial random effects for \texttt{splm}, \texttt{spmvlm}, and \texttt{spMisalignLM} using composition sampling.

Usage

```r
spRecover(sp.obj, get.beta=TRUE, get.w=TRUE, start=1, end, thin=1,
           verbose=TRUE, n.report=100, ...)
```

Arguments

- **sp.obj**: an object returned by \texttt{splm}, \texttt{spmvlm}, or \texttt{spMisalignLM}.
- **get.beta**: if TRUE, regression coefficients will be recovered.
- **get.w**: if TRUE, spatial random effects will be recovered.
- **start**: specifies the first sample included in the composition sampling.
- **end**: specifies the last sample included in the composition. The default is to use all posterior samples in \texttt{sp.obj}.
- **thin**: a sample thinning factor. The default of 1 considers all samples between \texttt{start} and \texttt{end}. For example, if \texttt{thin = 10} then 1 in 10 samples are considered between \texttt{start} and \texttt{end}.
- **verbose**: if TRUE, model specification and progress of the sampler is printed to the screen. Otherwise, nothing is printed to the screen.
- **n.report**: the interval to report sampling progress.
- **...**: currently no additional arguments.

Value

The input \texttt{sp.obj} with posterior samples of regression coefficients and/or spatial random effects appended. tags:

- \texttt{p.theta.recover.samples}
 - those \texttt{p.theta.samples} used in the composition sampling.
p.beta.recover.samples
 a coda object of regression coefficients posterior samples.

p.w.recover.samples
 a coda object of spatial random effects posterior samples. Rows correspond to
 locations’ random effects and columns are posterior samples.

Author(s)

Andrew O. Finley <finleya@msu.edu>,
Sudipto Banerjee <baner09@umn.edu>

References

Finley, A.O., S. Banerjee, and A.E. Gelfand. (2015) spBayes for large univariate and multivariate

Examples

```r
## Not run:
rmvn <- function(n, mu=0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p))))
    stop("Dimension problem!")
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}

set.seed(1)

n <- 50
coords <- cbind(runif(n,0,1), runif(n,0,1))
X <- as.matrix(cbind(1, rnorm(n)))

B <- as.matrix(c(1,5))
p <- length(B)
sigma.sq <- 10
tau.sq <- 0.01
phi <- 3/0.5

D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0,n), sigma.sq*R)
y <- rnorm(n, X%*%B + w, sqrt(tau.sq))
n.samples <- 1000

starting <- list("phi"=3/0.5, "sigma.sq"=50, "tau.sq"=1)
tuning <- list("phi"=0.1, "sigma.sq"=0.1, "tau.sq"=0.1)
```
priors <- list("beta.Flat", "phi.Unif"=c(3/1, 3/0.1),
"sigma.sq.IG"=c(2, 5), "tau.sq.IG"=c(2, 0.01))
cov.model <- "exponential"

m.1 <- spLM(y~X-1, coords=coords, starting=starting, tuning=tuning,
priors=priors, cov.model=cov.model, n.samples=n.samples)

m.1 <- spRecover(m.1, start=0.5*n.samples, thin=2)

summary(window(m.1$p.beta.recover.samples))

w.hat <- apply(m.1$p.w.recover.samples, 1, mean)
plot(w, w.hat, xlab="Observed w", ylab="Fitted w")

End(Not run)

WEF.dat

Western Experimental Forest inventory data

Description

Data generated as part of a long-term research study on an experimental forest in central Oregon. This dataset holds the coordinates for all trees in the experimental forest. The typical stem measurements are recorded for each tree. Crown radius was measured at the cardinal directions for a subset of trees. Mean crown radius was calculated for all trees using a simple relationship between DBH, Height, and observed crown dimension.

Usage

data(WEF.dat)

Format

A data frame containing 2422 rows and 15 columns.

Zurich.dat

Zurichberg Forest inventory data

Description

Inventory data of the Zurichberg Forest, Switzerland (see Mandallaz 2008 for details). These data are provided with the kind authorization of the Forest Service of the Canton of Zurich.

This dataset holds the coordinates for all trees in the Zurichberg Forest. Species (SPP), basal area (BAREA) diameter at breast height (DBH), and volume (VOL) are recorded for each tree. See species codes below.
Usage

 data(Zurich.dat)

Format

A data frame containing 4954 rows and 6 columns.

Examples

```r
## Not run:
data(Zurich.dat)

coords <- Zurich.dat[,c("X_TREE", "Y_TREE")]
spp.name <- c("beech", "maple", "ash", "other broadleaves", 
               "spruce", "silver fir", "larch", "other coniferous")
spp.col <- c("yellow", "red", "orange", "pink", 
             "green", "dark green", "black", "gray")

plot(coords, col=spp.col[Zurich.dat$SPP+1],
     pch=19, cex=0.5, ylab="Northing", xlab="Easting")

legend.coords <- c(23,240)

legend(legend.coords, pch=19, legend=spp.name,
       col=spp.col, bty="n")

## End(Not run)
```
Index

+Topic **datasets**
 - BEF.dat, 15
 - FBC07.dat, 15
 - FORMGMT.dat, 17
 - NETemp.dat, 21
 - NYOzone.dat, 21
 - WEF.dat, 66
 - Zurich.dat, 66

+Topic **manip**
 - mkMvX, 18

+Topic **misc**
 - bayesGeostatExact, 7
 - bayesLMConjugate, 12
 - pointsInPoly, 22

+Topic **model**
 - adaptMetropGibbs, 2
 - bayesLMRef, 13
 - spDynLM, 27
 - spGLM, 32
 - splm, 38
 - spMisalignGLM, 42
 - spMisalignLM, 47
 - spMvGLM, 51
 - spMvLM, 57

+Topic **utilities**
 - iDist, 17
 - mkSpCov, 19
 - spDiag, 24
 - spPredict, 61
 - spRecover, 64

adaptMetropGibbs, 2
bayesGeostatExact, 7, 61
bayesLMConjugate, 12, 61
bayesLMRef, 13, 61
BEF.dat, 15

FBC07.dat, 15
FORMGMT.dat, 17

glm, 33, 43, 53

iDist, 17

mkMvX, 18, 61
mkSpCov, 19

NETemp.dat, 21
NYOzone.dat, 21

pointsInPoly, 22

spDiag, 24
spDynLM, 27
spGLM, 24, 32, 54, 61
spLM, 24, 29, 38, 59, 61, 64
spMisalignGLM, 42, 49, 61, 62
spMisalignLM, 44, 47, 61, 62, 64
spMvGLM, 24, 35, 44, 51, 61, 62
spMvLM, 24, 40, 49, 57, 61, 62, 64
spPredict, 18, 61
spRecover, 24, 64

WEF.dat, 66

Zurich.dat, 66

68