Package ‘sensitivityPStrat’

February 20, 2015

Type Package
Title Principal Stratification Sensitivity Analysis Functions
Version 1.0-6
Date 2014-11-04
Author Charles Dupont, Bryan Shepherd
Maintainer Charles Dupont <charles.dupont@vanderbilt.edu>
Description This package provides functions to perform principal stratification sensitivity analyses on datasets.
Imports stats, survival
License GPL
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-12-04 00:14:37

R topics documented:
sensitivityPStrat-package .. 2
calc.v .. 3
funArray ... 4
funMatrix .. 5
funVector .. 6
plot.sensitivity ... 6
print.sensitivity ... 8
sensitivityGBH .. 9
sensitivityHHS .. 13
sensitivityJR .. 15
sensitivitySGD .. 19
sensitivitySGL .. 22
vaccine.trial ... 26

Index 28
Principal Stratification Sensitivity Analysis Functions

Description

This package provides functions to perform sensitivity analyses of treatment effects within principal strata.

Details

A treatment effect is a contrast between \(Y(0) \) and \(Y(1) \) where \(Y(0) \) is the outcome if not treated and \(Y(1) \) is the outcome if treated. The average treatment effect (or average causal effect) is \(E(Y(1) - Y(0)) \). In some settings there may be interest in estimating the average treatment effect among those who would be selected under either treatment assignment (i.e., \(E(Y(1) - Y(0)|S(0) = S(1) = 1) \), where \(S(0) \) is the indicator of selection if not treated and \(S(1) \) is the indicator of selection if treated (Robins 1986). For example, one may want to assess the average treatment effect of a drug on quality of life among those who would have lived regardless of their treatment assignment. The subgroup defined by \(S(0) = S(1) = 1 \) (e.g., those who would have lived regardless of treatment assignment) has been referred to as a principal stratum (Frangakis and Rubin, 2002). Principal stratum membership is not known so to identify the average treatment effect (or related estimands) within a principal stratum we assume 1. SUTVA (Rubin 1978) (i.e., no interference – that the potential outcomes for all subjects are independent of the treatment assignment of other subjects), 2. ignorable treatment assignment (i.e., random assignment of treatment), 3. that one of the principal strata is empty, and 4. that a selected subject’s outcome if assigned one treatment is independent of selection if assigned the other treatment. This package implements sensitivity analysis methods that relax these latter two assumptions.

- `sensitivityHHS` and `sensitivityGBH` implement the methods described by Hudgens, Hoering and Self (2003) and Gilbert, Bosch, and Hudgens (2003), respectively. They estimate the average treatment effect in the always-selected principal stratum under assumptions 1-3, relaxing 4 using a worse-case scenario analysis (`sensitivityHHS`) or using a sensitivity parameter (`sensitivityGBH`). These functions also have options to do rank-based analyses and to compute other measures of treatment efficacy with continuous or binary outcomes (Hudgens and Halloran, 2006). `sensitivitySGL` implements the methods described by Shepherd, Gilbert, and Lumley (2006). It is similar to `sensitivityHHS` and `sensitivityGBH` except that it computes the difference between distribution functions in the always-selected principal stratum and allows the outcome to be right-censored.
- `sensitivityJR` estimates the average treatment effect in the always-selected principal stratum relaxing assumptions 3 and 4 as described by Jemiai and Rotnitzky (2005) and Shepherd, Redman, and Ankerst (2008). `sensitivitySGD` incorporates the methods of Shepherd, Gilbert, and Dupont (in press), extending `sensitivityJR` to right-censored outcomes.

Author(s)

Bryan E. Shepherd
Department of Biostatistics
Vanderbilt University
References

Shepherd BE, Gilbert PB, and Dupont CT, “Sensitivity analyses comparing time-to-event outcomes only existing in a subset selected postrandomization and relaxing monotonicity,” Biometrics (in press).

See Also

surv

calc.v

Calculates the v matrix used in the estimation of standard errors in sensitivitySGL.

Description

Calculates the v matrix used in the estimation of standard errors in sensitivitySGL.
funArray

Usage

calc.v(event, time)

Arguments

event logical vector indicating whether and event has happened.

time vector; time until event or observation halted.

Value

returns a matrix.

Author(s)

Bryan E. Shepherd
Department of Biostatistics
Vanderbilt University

Charles Dupont
Department of Biostatistics
Vanderbilt University

References

funArray Create an array of functions

Description

Creates a array of functions.

Usage

funArray(...)
funMatrix

Author(s)

Charles Dupont
Department of Biostatistics
Vanderbilt University

See Also

funVector, funMatrix, array

funMatrix

Create a matrix of functions

Description

Creates a matrix of functions.

Usage

funMatrix(...)

Arguments

... passed to matrix. see arguments to matrix

Author(s)

Charles Dupont
Department of Biostatistics
Vanderbilt University

See Also

funVector, funArray, matrix
funVector

Create a vector of functions

Description

Creates a vector of functions.

Usage

funVector(length = 0)

Arguments

length integer; length of vector.

Author(s)

Charles Dupont
Department of Biostatistics
Vanderbilt University

See Also

funMatrix, funArray, vector

plot.sensitivity

plots the results of calls to the sensitivity functions.

Description

Functions used to plot the objects created by the sensitivityPStrat family of functions.

Usage

S3 method for class 'sensitivity.1.0d'
plot(x, xlab = expression(beta), ylab = "ACE",
xlim, ylim, display = c("analytic", "bootstrap"),
ci.select = 1,
col = "black", line.col = col, point.col = col,
analytic.col = "red", analytic.line.col = analytic.col,
analytic.point.col = analytic.col,
bootstrap.col = "green", bootstrap.line.col = bootstrap.col,
bootstrap.point.col = bootstrap.col,
panel.last = NULL, type = "l", ...)
S3 method for class 'sensitivity.2.0d'
plot(x, xlim, ylim, xlab = expression(beta[0]), ylab = expression(beta[1]),
 display = c("analytic", "bootstrap"),
 col = c(gray(0.9), gray(1), gray(0.8)),
 panel.last = NULL, ...)

S3 method for class 'sensitivity.1.1d'
plot(x, xlim, ylim,
 xlab = expression(beta), ylab = "SCE",
 t.point, display = c("analytic", "bootstrap"),
 col = "black", line.col = col, point.col = col,
 analytic.col = "red", analytic.line.col = analytic.col,
 analytic.point.col = analytic.col,
 bootstrap.col = "green", bootstrap.line.col = bootstrap.col,
 bootstrap.point.col = bootstrap.col,
 panel.last = NULL, type = "l", ...)

Arguments

- **x**: sensitivity object
- **t.point**: the time point at which data to create the plot.
- **display**: character vector. Controls which confidence interval to use plot.
- **ci.select**: integer vector or 'all'. Selects the confidence interval to be plotted. If set to 'all' then all confidence intervals are plotted. Default value is 1.
- **line.col**: the color all the lines should be.
- **point.col**: the color all the infinity points should be.
- **analytic.col**: vector; the color of all of the analytic confidence interval markings. Value are recycled if more confidence intervals are selected then given color values.
- **analytic.line.col**: vector; the color of all of the analytic confidence interval lines. Value are recycled if more confidence intervals are selected then given color values.
- **analytic.point.col**: vector; the color of all of the analytic confidence interval infinity points. Value are recycled if more confidence intervals are selected then given color values.
- **bootstrap.col**: vector; the color of all of the bootstrap confidence interval markings. Value are recycled if more confidence intervals are selected then given color values.
- **bootstrap.line.col**: vector; the color of all of the bootstrap confidence interval lines. Value are recycled if more confidence intervals are selected then given color values.
- **bootstrap.point.col**: vector; the color of all of the bootstrap confidence interval infinity points. Value are recycled if more confidence intervals are selected then given color values.
- **xlim, ylim, xlab, ylab, col, panel.last, type**: see `plot.default`
- **...**: arguments passed to `plot.default`
print.sensitivity

prints the results of calls to the sensitivity functions.

Description

Print the prints sensitivityPStrat objects in a visually understandable way.

Author(s)

Charles Dupont
Department of Biostatistics
Vanderbilt University

See Also

plot.default

Examples

data(vaccine.trial)

ansJR<-with(vaccine.trial,
 sensitivityJR(z=treatment,s=hiv.outcome,y=logVL,
 beta0=c(-1,-.5,-.25,0,.25,.5,1),
 beta1=c(-1,-.5,-.25,0,.25,.5,1),
 phi=c(0.95,0.90), selection="infected",
 groupings=c("placebo","vaccine"),
 N.boot=50)
)

plot(ansJR)

ans<with(vaccine.trial,
 sensitivityGBH(z=treatment,s=hiv.outcome,y=logVL,
 beta=c(-Inf,-1,0.75,-0.5,-0.25,0,.25,.5,.75,1,Inf),
 selection="infected",
 groupings=c("placebo","vaccine"),
 empty.principal.stratum=c("not infected","infected"),
 ci.method="bootstrap", ci=c(0.95, 0.9, 0.9),
 ci.type=c("twoSided", "upper", "lower"),
 custom.FUN=function(mu0, mu1, ...) mu1 - mu0,
 N.boot=50, method=c("ACE", "T1", "T2"),
 upperTest=TRUE, lowerTest=TRUE, twoSidedTest=TRUE)
)

plot(ans, ci.select="all", bootstrap.col=c("red","green","blue"))
Usage

```r
## S3 method for class 'sensitivity.0d'
print(x, ...)
## S3 method for class 'sensitivity.1d'
print(x, ...)
```

Arguments

- `x`: sensitivity object
- `...`: arguments passed to other print methods

Author(s)

Charles Dupont
Department of Biostatistics
Vanderbilt University

See Also

- `print.default`

Examples

```r
data(vaccine.trial)

print(with(vaccine.trial,
    sensitivityJR(z=treatment,s=hiv.outcome,y=logVL,
    beta0=c(-1,-.75,-.5,-.25,0,.25,.5,.75,1),
    beta1=c(-1,-.75,-.5,-.25,0,.25,.5,.75,1),
    phi=c(0.95,0.90), selection="infected",
    groupings=c("placebo","vaccine"),
    N.boot=50)
))
```

Description

Performs a sensitivity analysis using the method described in Gilbert, Bosch, and Hudgens (2003).
Usage

sensitivityGBH(z, s, y, beta, selection, groupings,
 empty.principal.stratum, ci = 0.95,
 ci.method = c("analytic", "bootstrap"),
 ci.type = "twoSided", custom.FUN = NULL, na.rm = FALSE,
 N.boot = 100, interval = c(-100, 100),
 upperTest = FALSE, lowerTest = FALSE, twoSidedTest = TRUE,
 method = c("ACE", "T1", "T2"), isSlaveMode=FALSE)

Arguments

z
 vector; contains the grouping values (e.g., treatment assignment) for each record.

s
 vector; indicates whether a record is selected.

y
 vector; outcome value. Can be NA for unselected records.

beta
 vector; values of the β sensitivity parameter. Inf and -Inf are acceptable.

selection
 The value of s indicating selection.

groupings
 vector of two elements $c(g0, g1)$; describes the possible group values. The first element $g0$ being the value of z that delineates the first group, the last element $g1$ being the value of z that delineates the second group.

empty.principal.stratum
 vector of two elements $c(s0, s1)$; describes the s values that select the empty principal stratum. If empty.principal.stratum=c(s0, s1), then stratum defined by $S(g0) = s0$ and $S(g1) = s1$ is the empty stratum. In this example $s0$ and $s1$ refer to the two possible values of s. (Note: method only works if $s0 \neq s1$).

ci
 numeric vector; confidence interval level. Defaults to 0.95

ci.method
 character; method by which the confidence interval and variance are calculated. Can be “analytic” or “bootstrap”. Defaults to c("analytic", "bootstrap")

ci.type
 character vector; type of confidence interval that the corresponding ci element is referring to. Can be “upper”, “lower”, or “twoSided”. Defaults to “twoSided”.

custom.FUN
 function; function to calculate custom result. $\mu0$, $\mu1$, $\phi0$, $\phi1$ are available to be used as arguments in the custom function, where $\mu0 = E(Y(g0)|S(g0) = S(g1) = selected)$, $\mu1 = E(Y(g1)|S(g0) = S(g1) = selected)$, $\phi0 = P(S(g0) = selected)$, and $\phi1 = P(S(g1) = selected)$. The custom function must return a single value.

na.rm
 logical; indicates whether records that are invalid due to NA values should be removed from the data set.

N.boot
 integer; number of bootstrap repetitions that will be run when ci.method includes “bootstrap”.

interval
 numeric vector of length 2. Controls the range limits used by optimize to estimate α.

lowerTest
 logical. Return the lower one sided p-value for returned tests. Defaults to FALSE

upperTest
 logical. Return the upper one sided p-value for returned tests. Defaults to FALSE
sensitivity

Details

Performs a sensitivity analysis estimating the average causal effect among those who would have been selected regardless of treatment assignment (ACE). The method assumes no interference (i.e., potential outcomes of all subjects are unaffected by treatment assignment of other subjects), ignorable (i.e., random) treatment assignment, and monotonicity (i.e., one of the principal strata is empty). ACE is identified by assuming a value of the sensitivity parameter beta, where \(e^\beta \) has an odds ratio interpretation:

If \(\text{empty.principal.stratum} = c(S(g0) = \text{not selected}, S(g1) = \text{selected}) \) then given selected if assigned \(g0 \), the odds of being selected if assigned \(g1 \) multiplicatively increase \(e^\beta \) for every 1-unit increase in \(Y(g0) \).

If \(\text{empty.principal.stratum} = c(S(g0) = \text{selected}, S(g1) = \text{not selected}) \) then given selected if assigned \(g1 \), the odds of being selected if assigned \(g0 \) multiplicatively increase \(e^\beta \) for every 1-unit increase in \(Y(g1) \).

Specifying \(\text{beta}=-\text{Inf} \) or \(\text{beta}=\text{Inf} \) calls \text{sensitivityHHS}.

T1 and T2 are rank-based analogs of ACE. See <REF TBD>.

Value

an object of class sensitivity2d.

ACE vector; \(ACE = E(Y(g1) - Y(g0)|S(g1) = S(g0) = \text{selection}) \). Vector of the estimated ACE values for specified beta values. Only exists if \text{method} includes “ACE”.

ACE.ci array; confidence interval of ACE determined by quantiles of bootstrap if \text{ci.method} includes “bootstrap”. Otherwise calculated using analytic variance with large sample normal approximation. Only exists if \text{method} includes “ACE”.

ACE.var vector; estimated variance of ACE. Only exists if \text{method} includes “ACE”.

ACE.p vector; estimated p-value of ACE. Only exists if \text{method} includes “ACE”.

T1 vector; Vector of the estimated T1 test statistic for specified beta values. Only exists if \text{method} includes “T1”.

T1.p vector; estimated p-value of T1. Only exists if \text{method} includes “T1”.

T2 vector; Vector of the estimated T2 test statistic for specified beta values. Only exists if \text{method} includes “T2”.

T2.p vector; estimated p-value of T2. Only exists if \text{method} includes “T2”.

beta vector; user-specified \(\beta \) values

alphahat vector; estimated values of \(\alpha \)
Fas0 function; estimator for the empirical distribution function values for \(y_0 \) in the first group in the always selected principal stratum. \(\Pr(Y(g_0) \leq y_0 | S(g_0) = S(g_1) = \text{selection}; \beta) \)

Fas1 function; estimator for the empirical distribution function values for \(y_1 \) in the second group in the always selected principal stratum. \(\Pr(Y(g_1) \leq y_1 | S(g_0) = S(g_1) = \text{selection}; \beta) \)

Author(s)

Bryan E. Shepherd
Department of Biostatistics
Vanderbilt University

Charles Dupont
Department of Biostatistics
Vanderbilt University

References

See Also

sensitivityGBH, sensitivityHHS, sensitivityJR, sensitivitySGL

Examples

data(vaccine.trial)
ans<-with(vaccine.trial,
 sensitivityGBH(z=treatment, s=hiv.outcome, y=logVL,
 beta=c(0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4),
 selection="infected",
 groupings=c("placebo", "vaccine"),
 empty.principal.stratum=c("not infected", "infected"),
 N.boot=100)
)
ans

ans<-with(vaccine.trial,
 sensitivityGBH(z=treatment, s=hiv.outcome, y=logVL,
 beta=c(-Inf, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 1, Inf),
 selection="infected",
 groupings=c("placebo", "vaccine"),
 empty.principal.stratum=c("not infected", "infected"),
 ci.method="bootstrap", ci=c(0.95, 0.9, 0.9),
 ci.type=c("twoSided", "upper", "lower"),
 custom.FUN=function(mu0, mu1, ...) mu1 - mu0,
 N.boot=100, method=c("ACE", "T1", "T2"),
 upperTest=TRUE, lowerTest=TRUE, twoSidedTest=TRUE)
sensitivityHHS

Describes the principal stratification sensitivity analysis using the HHS method.

Usage

sensitivityHHS(z, s, y, bound = c("upper", "lower"), selection, groupings, empty.principal.stratum, ci = 0.95, ci.method = c("bootstrap", "analytic"), ci.type = "twoSided", custom.FUN = NULL, na.rm = FALSE, N.boot = 100, upperTest = FALSE, lowerTest = FALSE, twoSidedTest = TRUE, method = c("ACE", "T1", "T2"), isSlaveMode=FALSE)

Arguments

z vector; contains the grouping values (e.g., treatment assignment) for each record.
s vector; indicates whether a record is selected.
y vector; outcome values. Can be NA for unselected records.
bound vector; which bound should be calculated, “upper” and/or “lower”. Partial string matching is performed.
selection The value of s indicating selection.
groupings vector of two elements c(g0, g1); describes to possible group values. The first element g0 being the value of z which delineates the first group, the last element g1 being the value of z which delineates the second group.
empty.principal.stratum vector of two elements c(s0, s1); describes the s values that select the empty principal stratum. If empty.principal.stratum=c(s0, s1), then stratum defined by S(g0) = s0 and S(g1) = s1 is the empty stratum. In this example s0 and s1 refer to the two possible values of s. (Note: method only works if s0 = s1).

isSlaveMode character vector; type of confidence interval that the corresponding ci element is referring to. Can be “upper”, “lower”, or “twoSided”. Defaults to “twoSided”.

Notes

Currently only works for “bootstrap”.

Method

Principal stratification sensitivity analysis using the HHS method.

Description

Performs a principal stratification sensitivity analysis using the method described in Hudgens, Hoerring, and Self (2003).

Usage

sensitivityHHS(z, s, y, bound = c("upper", "lower"), selection, groupings, empty.principal.stratum, ci = 0.95, ci.method = c("bootstrap", "analytic"), ci.type = "twoSided", custom.FUN = NULL, na.rm = FALSE, N.boot = 100, upperTest = FALSE, lowerTest = FALSE, twoSidedTest = TRUE, method = c("ACE", "T1", "T2"), isSlaveMode=FALSE)
custom.FUN function; function to calculate custom result. \(\mu_0, \mu_1, p_0, p_1\) are available to be used as arguments in the custom function, where \(\mu_0 = E(Y(g0)|S(g0) = S(g1) = \text{selected})\), \(\mu_1 = E(Y(g1)|S(g0) = S(g1) = \text{selected})\), \(p_0 = P(S(g0) = \text{selected})\), and \(p_1 = P(S(g1) = \text{selected})\). The custom function must return a single value.

na.rm logical; indicates whether records that are invalid due to NA values should be removed from the data set.

N.boot integer. Number of bootstrap repetitions that will be run when ci.method includes “bootstrap”.

lowerTest logical. Return the lower one sided p-value for returned tests. Defaults to FALSE.

upperTest logical. Return the upper one sided p-value for returned tests. Defaults to FALSE.

twoSidedTest logical. Return a two sided p-value for returned tests. Defaults to TRUE.

method character vector; type of test statistic calculated. Can be one or more of “ACE”, “T1”, or “T2”. Defaults to “ACE”.

isSlaveMode logical; Internal Use only. Used in recursion.

Details

Performs a sensitivity analysis estimating the average causal effect among those who would have been selected regardless of treatment assignment (ACE). The method assumes no interference (i.e., potential outcomes of all subjects are unaffected by treatment assignment of other subjects), ignorable (i.e., random) treatment assignment, and monotonicity (i.e., one of the principal strata is empty). ACE is still not identified after making these assumptions, so this method computes the lower and upper bounds of the estimated ACE. These bounds correspond to the values one would get if using sensitivityGBH and specifying the sensitivity parameter beta as -Inf or Inf.

Value

an object of class sensitivity2d.

ACE \(ACE = E(Y(g1) - Y(g0)|S(g0) = S(g1) = \text{selection})\). Vector of the estimated ACE values at the specified bounds. Only exists if method includes “ACE”.

ACE.ci vector; confidence interval of ACE determined by quantiles of bootstrap if ci.method includes “bootstrap”. Otherwise calculated using analytic variance with large sample normal approximation (NOT YET WORKING). Only exists if method includes “ACE”.

ACE.var vector; estimated variance of ACE. Only exists if method includes “ACE”.

ACE.p vector; estimated p-value of ACE. Only exists if method includes “ACE”.

Fas0 function; estimator for the empirical distribution function values for \(y0\) in the first group in the always selected principal stratum at the bounds. \(Pr(Y(g0) \leq y0|S(g0) = S(g1) = \text{selection})\)

Fas1 function; estimator for the empirical distribution function values for \(y1\) in the second group in the always selected principal stratum at the bounds. \(Pr(Y(g1) \leq y1|S(g0) = S(g1) = \text{selection})\)
Author(s)

Bryan E. Shepherd
Department of Biostatistics
Vanderbilt University

Charles Dupont
Department of Biostatistics
Vanderbilt University

References

See Also

sensitivityGBH, sensitivityJR, sensitivitySGL

Examples

data(vaccine.trial)
est.bounds<-with(vaccine.trial,
 sensitivityHHS(z=treatment, s=hiv.outcome, y=logVL,
 selection="infected", groupings=c("placebo","vaccine"),
 empty.principal.stratum=c("not infected","infected"),
 N.boot=100)
)
est.bounds

est.bounds<-with(vaccine.trial,
 sensitivityHHS(z=treatment, s=hiv.outcome, y=logVL,
 selection="infected", groupings=c("placebo","vaccine"),
 empty.principal.stratum=c("not infected","infected"),
 method=c("ACE", "T1", "T2"), N.boot=100,
 custom.FUN=function(mu0, mu1, ...) mu1 - mu0,
 upperTest=TRUE, lowerTest=TRUE, twoSidedTest=TRUE)
)
est.bounds

sensitivityJR Principal stratification sensitivity analysis relaxing the monotonicity assumption.

Description

Principal stratification sensitivity analysis relaxing monotonicity as described by Jemiai and Rotnitzky (2005) and implemented by Shepherd, Redman, and Ankerst (2008).
Usage

\texttt{sensitivityJR(z, s, y, beta0, beta1, phi, Pi, psi,}
\texttt{ selection, groupings,}
\texttt{ ci = 0.95, ci.method = c("analytic","bootstrap"),}
\texttt{ ci.type = "twoSided", custom.FUN=NULL, na.rm = FALSE,}
\texttt{ N.boot = 100, interval = c(-100, 100),}
\texttt{ upperTest = FALSE, lowerTest = FALSE, twoSidedTest = TRUE,}
\texttt{ verbose=getOption("verbose"), isSlaveMode = FALSE)}

Arguments

\texttt{z} vector; contains the grouping values (e.g., treatment assignment) for each record.
\texttt{s} vector; indicates whether a record is selected.
\texttt{y} vector; outcome values. Can be \texttt{NA} for unselected records.
\texttt{beta0} vector; values of the sensitivity parameter β_0 linking outcome in group g_0 with selection if assigned group g_1.
\texttt{beta1} vector; values of the sensitivity parameter β_1 linking outcome in group g_1 with selection if assigned group g_0.
\texttt{phi, Pi, psi} vector; sensitivity parameters specifying the joint distribution of $S(g_0), S(g_1)$. Only one of the three parameters should be specified. \texttt{psi} is the log-odds ratio of selection. \texttt{Pi} is the probability of being in the always selected principal stratum ($Pr(S(g_0) = S(g_1) = \text{selected})$). \texttt{phi} is the probability of selection in group g_0 given selection in group g_1 ($Pr(S(g_0) = 1|S(g_1) = 1)$).
\texttt{selection} The value of \texttt{s} indicating selection.
\texttt{groupings} vector of two elements \texttt{c(g0,g1)}; describes to possible group values. The first element g_0 being the value of \texttt{z} the delineates the first group, the last element g_1 being the value of \texttt{z} which delineates the second group.
\texttt{ci} numeric vector; confidence interval value. Defaults to \texttt{0.95}
\texttt{ci.method} character; method by which the confidence interval and variance are calculated. Can be “analytic” or “bootstrap”. Defaults to \texttt{c("analytic","bootstrap")}
\texttt{ci.type} character vector; type of confidence interval that the corresponding \texttt{ci} element is referring to. Can be “upper”, “lower”, or “twoSided”. Defaults to “twoSided”.
\texttt{custom.FUN} function; function to calculate custom result. \texttt{mu0, mu1, p0, p1} are available to be used as arguments in the custom function, where \texttt{mu0} = $E(Y(g_0)|S(g_0) = S(g_1) = \text{selected})$, \texttt{mu1} = $E(Y(g_1)|S(g_0) = S(g_1) = \text{selected})$, \texttt{p0} = $P(S(g_0) = \text{selected})$, and \texttt{p1} = $P(S(g_1) = \text{selected})$. The custom function must return a single value.
\texttt{na.rm} logical; indicates whether records that are invalid due to \texttt{NA} values should be removed from the data set.
\texttt{N.boot} integer; number of bootstrap repetitions that will be run when \texttt{ci.method} includes “bootstrap”.
\texttt{interval} numeric vector of length 2. Controls the range limits used by optimize to estimate α_0 and α_1.
\texttt{lowerTest} logical. Return the lower one sided p-value for the ACE. Defaults to \texttt{FALSE}
upperTest logical. Return the upper one sided p-value for the ACE. Defaults to FALSE
twoSidedTest logical. Return a two sided p-value for the ACE. Defaults to TRUE
verbose logical; prints dots when bootstrapping to show that something is happening. Bootstrapping can take a long time.
isSlaveMode logical. Internal Use only. Used in recursion.

Details

Performs a sensitivity analysis estimating the average causal effect among those who would have been selected regardless of treatment assignment (ACE) without assuming monotonicity (i.e., that one of the principal strata is empty). The method assumes no interference (i.e., potential outcomes of all subjects are unaffected by treatment assignment of other subjects) and ignorable (i.e., random) treatment assignment. ACE is identified by assuming values for the sensitivity parameters beta0, beta1, and one of the parameters phi, psi, or Pi. The sensitivity parameters beta0 and beta1 have a log-odds ratio interpretation (see help for sensitivityGBH).

Only one of the parameters phi, psi, or Pi should be specified as all depend on each other. psi is unrestrained taking any value on the real line. The other parameters, psi and Pi have constraints and there will be estimation problems if these parameters are set at values outside of their range of acceptable values based on the observed data. See Shepherd, Gilbert, Dupont (in press) for more details.

Value

object of class sensitivitySd

ACE array; estimated values of ACE for all combinations of beta0, beta1, and phi, Pi, psi. Array dimensions are length(beta0), length(beta1), length(psi).
ACE.ci array; confidence interval determined by quantile if ci.method includes “bootstrap”. Otherwise calculated using analytic variance with large sample normal approximation. Array dimensions the same as ACE element.
ACE.var array; estimated variance of ACE. Array dimensions the same as ACE element.
ACE.p vector; estimated p-value of ACE.
beta0 vector; β values used for the first group.
alphahat0 vector; estimated α values for the first group.
Fas0 function; estimator for the distribution function of y0 in the first group in the always selected stratum.
beta1 vector; β values used for the second group.
alphahat1 vector; estimated α values for the second group.
Fas1 function; estimator for the distribution function of y1 in the second group in the always selected stratum.
phi vector; phi values used.
Pi vector; Pi values used.
psi vector; psi values used.
ci.map list; mapping of confidence interval to quantile probability. Use numbers contained within as indices to the SCE.ci element.
Author(s)

Bryan E. Shepherd
Department of Biostatistics
Vanderbilt University

Charles Dupont
Department of Biostatistics
Vanderbilt University

References

Shepherd BE, Gilbert PB, and Dupont CT, “Sensitivity analyses comparing time-to-event outcomes only existing in a subset selected postrandomization and relaxing monotonicity,” Biometrics, in press.

See Also

`sensitivityGBH, sensitivitySGD`

Examples

data(vaccine.trial)
ansJR<-with(vaccine.trial,
 sensitivityJR(z=treatment,s=hiv.outcome,y=logVL,
 beta0=c(-1,-.5,0,.5,1),
 beta1=c(-1,-.5,0,.5,1),
 phi=c(0.95,0.9), selection="infected",
 groupings=c("placebo","vaccine"),
 N.boot=100)
)

ansJR

data(vaccine.trial)
ansJR<-with(vaccine.trial,
 sensitivityJR(z=treatment,s=hiv.outcome,y=logVL,
 beta0=c(-1,-.5,0,.5,1),
 beta1=c(-1,-.5,0,.5,1),
 phi=c(0.95,0.9), selection="infected",
 groupings=c("placebo","vaccine"),
 custom.FUN=function(mu0, mu1, ...) mu1 - mu0,
sensitivitySGD

upperTest = TRUE, lowerTest = TRUE, twoSidedTest = TRUE,
N.boot = 100)

ansJR

sensitivitySGD

principal stratification sensitivity analysis with time to event data relaxing monotonicity assumption.

Description

Principal stratification sensitivity analysis with time to event data relaxing monotonicity as described by Shepherd, Gilbert, and Dupont (in press).

Usage

sensitivitySGD(z, s, d, y, v, beta0, beta1, phi, Pi, psi, tau,
time.points, selection, trigger, groupings,
followup.time,
 ci=0.95, ci.method = c("bootstrap", "analytic"),
 ci.type="twoSided", custom.FUN = NULL, na.rm = FALSE,
 N.boot = 100L, N.events = NULL, interval = c(-100, 100),
 upperTest = FALSE, lowerTest = FALSE, twoSidedTest = TRUE,
inCore = TRUE, verbose = getOption("verbose"),
colsPerFile = 1000L, isSlaveMode = FALSE)

Arguments

z vector; contains the grouping values (e.g., treatment assignment) for each record.
s vector; indicates whether a record is selected.
d vector; indicates whether a post-selection event has occurred. Can be NA for unselected records.
y vector; the length of time from selection until event (d) or censoring. Can be NA for unselected records.
v numeric vector; the length of time from randomization until selection or censoring.
beta0 numeric vector; values of the sensitivity parameter \(\beta \) linking outcome in group \(g0 \) with selection if assigned group \(g1 \).
beta1 numeric vector; values of the sensitivity parameter \(\beta \) linking outcome in group \(g1 \) with selection if assigned group \(g0 \).
phi, Pi, psi vectors; sensitivity parameters specifying the joint distribution of \(S(g0), S(g1) \). Only one of the three parameters should be specified. \(\psi \) is the log-odds ratio of selection. \(\phi \) is the probability of being in the always selected principal stratum \(\Pr(S(g0) = S(g1) = \text{selected}) \). \(\pi \) is the probability of selection in group \(g0 \) given selection in group \(g1 \) \(\Pr(S(g0) = 1|S(g1) = 1) \).
sensitivitySGD

tau maximum observed follow-up time after selection. Selection weights are constant for \(t > \tau \).

time.points vector; time points, \(t \), at which \(SCE(t) \) will be estimated.

selection The value of \(s \) indicating selection.

trigger The value of \(d \) that denotes the post-selection event.

groupings Vector of two elements \(c(g_0, g_1) \). the first element \(g_0 \) being the value of \(z \) that delineates the first group, the last element \(g_1 \) being the value of \(z \) which delineates the second group.

followup.time numeric value; cut-off point for \(v \) after which records are lost to censoring.

ci numeric vector; confidence interval level, defaults to 0.95.

ci.method character; method by which the confidence interval and variance are calculated. Can be “analytic” or “bootstrap”. Currently only works for “bootstrap”.

ci.type character vector; type of confidence interval that the corresponding \(ci \) element is referring to. Can be “upper”, “lower”, or “twoSided”. Defaults to “twoSided”.

custom.FUN function; function to calculate custom result. \(\text{Fas0, Fas1, time.points, p0, p1} \) are available to be used as arguments in the custom function. The custom function must return a vector of elements that is the same length as \(\text{time.points} \).

na.rm logical; indicates whether records that are invalid due to NA values should be removed from the data set.

N.boot integer; number of bootstrap repetitions that will be run when \(\text{ci.method} \) includes “bootstrap”.

N.events integer; number of selection-events (S) for each bootstrap replication when doing selection-event based bootstrapping.

interval numeric vector of length 2. Controls the range limits used to by \(\text{optimize} \) to estimate \(\alpha \).

lowerTest logical. Return the lower one sided p-value for SCE. Defaults to FALSE

upperTest logical. Return the upper one sided p-value for SCE. Defaults to FALSE

twoSidedTest logical. Return a two sided p-value for SCE. Defaults to TRUE

verbose logical; prints dots when bootstrapping to show that something is happening. Bootstrapping can take a long time.

inCore logical; running in memory if TRUE, running with scratch files if FALSE. Default is TRUE. For large data analysis, the user may want to switch this to FALSE to allow for processing on data sets larger than can fit in memory.

colsPerFile integer; number of columns of the scratch file to process in each pass (e.g., 100 columns).

isSlaveMode logical. Internal Use only. Used in recursion.

Details

Performs a sensitivity analysis estimating the “survival causal effect” among those who would have been selected regardless of treatment assignment (SCE) without assuming monotonicity (i.e., that one of the principal stratum is empty). The method assumes no interference (i.e., potential outcomes
of all subjects are unaffected by treatment assignment of other subjects), ignorable (i.e., random) treatment assignment, and independent censoring (i.e., time from selection to event is independent of time from selection until censoring). SCE is identified by assuming values for the sensitivity parameters β_0, β_1, and one of the parameters ϕ, ψ, or Π. The sensitivity parameters β_0 and β_1 have a log-odds ratio interpretation (see help for sensitivityGBH). Given selection in one treatment arm, the probability of selection if in the other treatment arm is assumed to be constant for $T(z) > \tau$.

Only one of the parameters ϕ, ψ, or Π should be specified as all depend on each other. ψ is unrestrained taking any value on the real line. The other parameters, ϕ and Π have constraints and there will be estimation problems if these parameters are set at values outside the of their range of acceptable values based on the observed data. See Shepherd, Gilbert, Dupont (in press) for more details.

Value

object of class `sensitivity3d`

- **SCE** array; Calculated values of SCE for all combinations of the values from β_0, β_1, $\phi/Pi/\psi$, and `time.points`. Array dimensions are `length(time.points)`, `length(\beta_0)`, `length(\beta_1)`, `length(\psi)`.

- **SCE.ci** array; Confidence interval of the SCE value. Confidence interval determined by `quantile` if using `ci.method` “bootstrap”. Otherwise calculated using analytic variance with large sample normal approximation. Array dimensions the same as element `SCE`.

- **SCE.var** array; estimated variance of SCE. Array dimensions the same as element `SCE`.

- **beta0** vector; β values used for first group.

- **beta1** vector; β values used for second group.

- **psi** vector; ψ values used.

- **Pi** vector; Pi values used.

- **ci.map** list; mapping of confidence interval to quantile probability. Use numbers contained within as indices to the `SCE.ci` element.

Author(s)

Bryan E. Shepherd
Department of Biostatistics
Vanderbilt University

Charles Dupont
Department of Biostatistics
Vanderbilt University
References

Shepherd BE, Gilbert PB, and Dupont CT. “Sensitivity analyses comparing time-to-event outcomes only existing in a subset selected postrandomization and relaxing monotonicity,” Biometrics, in press.

See Also

`sensitivitySGL`, `sensitivityJR`, `Surv`

Examples

data(vaccine.trial)
sens.analysis<-with(vaccine.trial,
 sensitivitySGD(z=treatment, s=hiv.outcome, y=followup.yearsART,
 d=ARTinitiation, beta0=c(0,-.25,-.5),
 beta1=c(0, -.25, -.5), phi=c(0.95, 0.90), tau=3,
 time.points=c(2,3), selection="infected",
 trigger="initiated ART",
 groupings=c("placebo","vaccine"), ci=.95,
 ci.method="bootstrap", N.boot=100)
)
sens.analysis

sens.analysis2<-with(vaccine.trial,
 sensitivitySGD(z=treatment, s=hiv.outcome, y=followup.yearsART,
 d=ARTinitiation, beta0=c(0,-.25,-.5),
 beta1=c(0, -.25, -.5), phi=c(0.95, 0.90), tau=3,
 time.points=c(2,3), selection="infected",
 trigger="initiated ART",
 groupings=c("placebo","vaccine"), ci=.95,
 custom.FUN=function(Fas0,Fas1,...,time.points) {
 Fas0(time.points) - Fas1(time.points)
 },
 ci.method="bootstrap", N.boot=100)
)
sens.analysis2

`sensitivitySGL`
principal stratification sensitivity analysis with time to event data

Description

Principal stratification sensitivity analysis with time to event data using the method described by Shepherd, Gilbert, and Lumley (2007).
Usage

sensitivitySGL(z, s, d, y, v, beta, tau, time.points, selection, trigger,
 groupings, empty.principal.stratum, followup.time,
 ci=0.95, ci.method = c("analytic", "bootstrap"),
 ci.type="twoSided", custom.FUN = NULL, na.rm = FALSE,
 N.boot = 100L, interval = c(-100, 100),
 upperTest = FALSE, lowerTest = FALSE, twoSidedTest = TRUE,
 verbose =getOption("verbose"), isslaveMode = FALSE)

Arguments

 z vector; contains the grouping values (e.g., treatment assignment) for each record.
 s vector; indicates whether a record is selected.
 d vector; indicates whether a post-selection event has occurred. Can be NA for unselected records.
 y vector; the length of time from selection until event (d) or censoring. Can be NA for unselected records.
 v numeric vector; the length of time from randomization until selection or censoring.
 beta vector; values of the sensitivity parameter β. Inf and -Inf are acceptable.
 tau maximum observed follow-up time after selection. Selection weights are constant for $t > \tau$.
 time.points vector; time points, t, at which $SCE(t)$ will be estimated.
 selection The value of s indicating selection.
 trigger logical; the value of d that denotes the post-selection event.
 groupings Vector of two elements $c(g0, g1)$, the first element $g0$ being the value of z that delineates the first group, the last element $g1$ being the value of z which delineates the second group.
 empty.principal.stratum vector of two elements $c(s0, s1)$; describes the s values that select the empty principal stratum. If empty.principal.stratum = $c(s0, s1)$, then stratum defined by $S(g0) = s0$ and $S(g1) = s1$ is the empty stratum. In this example $s0$ and $s1$ refer to the two possible values of s. (Note: method only works if $s0 \neq s1$).
 followup.time numeric value; cut-off point for v after which records are lost to censoring.
 ci numeric vector; confidence interval level, defaults to 0.95.
 ci.method character; method by which the confidence interval and variance are calculated. Can be “analytic” or “bootstrap”.
 ci.type character vector; type of confidence interval that the corresponding ci element is referring to. Can be “upper”, “lower”, or “twoSided”. Defaults to “twoSided”.
 custom.FUN function; function to calculate custom result. Fas0, Fas1, time.points, p0, p1 are available to be used as arguments in the custom function. The custom function must return a vector of elements that is the same length as time.points.
na.rm logical; indicates whether records that are invalid due to NA values should be removed from the data set.

N.boot integer; number of bootstrap repetitions that will be run when ci.method includes “bootstrap”.

interval numeric vector of length 2. Controls the range limits used to by optimize to estimate α.

lowerTest logical; Return the lower one sided p-value for SCE. Defaults to FALSE

upperTest logical; Return the upper one sided p-value for SCE. Defaults to FALSE

twoSidedTest logical; Return a two sided p-value for SCE. Defaults to TRUE

verbose logical; prints dots when bootstrapping to show that something is happening. Bootstrapping can take a long time.

isSlaveMode logical. Internal Use only. Used in recursion.

Details

Performs a sensitivity analysis estimating the “survival causal effect” among those who would have been selected regardless of treatment assignment (SCE). The method assumes no interference (i.e., potential outcomes of all subjects are unaffected by treatment assignment of other subjects), ignorable (i.e., random) treatment assignment, monotonicity (i.e., one of the principal strata is empty), and independent censoring (i.e., time from selection to event is independent of time from selection until censoring). SCE is then identified by assuming a value of the sensitivity parameter β, where e^β has an odds ratio interpretation (see help for sensitivityGBH). Given selection in one treatment arm, the probability of selection if in the other treatment arm is assumed to be constant for $T(z) > \tau$.

SCE is computed at user specified time points.

Specifying beta=-Inf or beta=Inf estimates the bounds for SCE.

Value

object of class sensitivity2d

SCE $SCE(t) = Pr(T(g0) \leq t \mid S(g0) = S(g1) = selection) - Pr(T(g1) \leq t \mid S(g0) = S(g1) = selection)$. Array of the estimated SCE at all time points for specified beta values. Array dimensions are length(time.points) by length(beta).

SCE.ci array; confidence interval of SCE determined by quantile if using ci.method includes “bootstrap”. Otherwise calculated using analytic variance with large sample normal approximation. Array dimensions the same as element SCE.

SCE.var array; estimated variance of SCE. Array dimensions the same as element SCE.

ci.map list; mapping of confidence interval to quantile probability. Use numbers contained within as indices to the SCE.ci element.

beta vector of user-specified β values

alphahat vector of estimated values of α

y0 vector of unique event times in the first group.
sensitivitySGL

\textbf{Fas0} \quad \text{matrix of estimated empirical distribution function values for } y0 \text{ in the first group in the always selected principal stratum. } Pr(Y(g0) \leq y0| S(g0) = S(g1) = \text{selection}; \beta) \\

\textbf{y1} \quad \text{vector of unique event times in the second group.} \\

\textbf{Fas1} \quad \text{matrix of estimated empirical distribution function values for } y1 \text{ in the second group in the always selected principal stratum. } Pr(Y(g1) \leq y1| S(g0) = S(g1) = \text{selection}; \beta) \\

\textbf{Author(s)} \\
Bryan E. Shepherd \\
Department of Biostatistics \\
Vanderbilt University \\

Charles Dupont \\
Department of Biostatistics \\
Vanderbilt University \\

\textbf{References} \\

\textbf{See Also} \\
sensitivityGBH, sensitivityHHS, sensitivitySGD, Surv \\

\textbf{Examples} \\
data(vaccine.trial) \\
sens.time<-with(vaccine.trial,
 sensitivitySGL(z=treatment, s=hiv.outcome, y=followup.yearsART,
 d=ARTinitiation, beta=c(.25, 0, -.25), tau=3,
 time.points=c(2,3), selection=\"infected\",
 trigger=\"initiated ART\", groupings=c(\"placebo\",\"vaccine\"),
 empty.principal.stratum=c(\"not infected\",\"infected\"),
 N.boot=50, interval=c(-200,200),
 upperTest=TRUE, lowerTest=TRUE, twoSidedTest=TRUE)
) \\
sens.time \\
sens.time2<-with(vaccine.trial,
 sensitivitySGL(z=treatment, s=hiv.outcome, y=followup.yearsART,
 d=ARTinitiation, beta=c(.25, 0, -.25), tau=3,
 time.points=c(2,3), selection=\"infected\",
 trigger=\"initiated ART\", groupings=c(\"placebo\",\"vaccine\"),
 empty.principal.stratum=c(\"not infected\",\"infected\")),
vaccine.trial

custom.FUN=function(Fas0,Fas1,time.points,
...)
{
Fas0(time.points) - Fas1(time.points)
}
N.boot=50, interval=c(-200,200)

sens.time2

sens.time3<-with(vaccine.trial,
sensitivitySGL2(time.treatment, s=hiv.outcome, y=followup.yearsART,
d=ARTinitiation, beta=c(-Inf, .25, 0, -25, Inf),
tau=3, time.points=c(2,3), selection="infected",
trigger="initiated ART", groupings=c("placebo", "vaccine"),
empty.principal.stratum=c("not infected", "infected"),
custom.FUN=function(Fas0,Fas1,time.points,
...)
{
Fas0(time.points) - Fas1(time.points)
}
N.boot=50, interval=c(-200,200)

sens.time3

vaccine.trial Simulated Vaccine Trial Data

Description
Simulated vaccine trial data for use in demonstrating the use of the sensitivity functions implemented in this package.

Usage
data(vaccine.trial)

Format
A data frame with 2000 observations on the following 5 variables.
treatment a factor with levels "placebo", "vaccine"
hiv.outcome a factor with levels "infected", "not infected"
logVL a numeric vector
ARTinitiation a factor with levels "initiated ART", "no ART"
followup.yearsART a numeric vector

Examples
set.seed(1063917538)
N<-2000
p0<-0.10
z<-c(rep(0,N/2),rep(1,N/2))
s0<-rbinom(N,1,p0)
y0<-rnorm(N,4.5,.75)
delta<-0
y1<-y0+delta
alpha<-4
beta<-1
w<-exp(alpha+beta*y0)/(1+exp(alpha+beta*y0))
s1<-s0+rbinom(N,1,w)
s<-s0*(1-z)+s1*z
y<-ifelse(s*(1-z)==1,y0,
 ifelse(s*z==1,y1,NA))
tjunk<-rexp(N,1/3)
cjunk<-runif(N,0,15)
t<-ifelse(s*(1-z)==1,tjunk,
 ifelse(s*z==1,tjunk,NA))
c1<-ifelse(s*(1-z)==1,cjunk,
 ifelse(s*z==1,cjunk,NA))
c<-pmin(c1,3)

treatment<-ifelse(z==1,"vaccine","placebo")
hiv.outcome<-ifelse(s==1,"infected","not infected")
logVL<-y
ARTinitiation<-ifelse(t<c,"initiated ART","no ART")
followup.yearsART<-round(pmin(t,c),2)

vaccine.trial<-data.frame(treatment=treatment,
 hiv.outcome=hiv.outcome,
 logVL=logVL, ARTinitiation=ARTinitiation,
 followup.yearsART=followup.yearsART)
Index

*Topic **classes**
 - funArray, 4
 - funMatrix, 5
 - funVector, 6

*Topic **datasets**
 - vaccine.trial, 26

*Topic **design**
 - calc.v, 3
 - sensitivityGBH, 9

*Topic **hplot**
 - plot.sensitivity, 6

*Topic **package**
 - sensitivityPStrat-package, 2

*Topic **print**
 - print.sensitivity, 8

array, 4, 5
calc.v, 3
funArray, 4, 5, 6
funMatrix, 5, 6
funVector, 5, 6
matrix, 5
optimize, 10, 20
plot.default, 7, 8
plot.sensitivity, 6
print.default, 9
print.sensitivity, 8
quantile, 17, 21
sensitivityGBH, 2, 9, 14, 15, 17, 18, 21, 24, 25
sensitivityHHS, 2, 11, 12, 13, 25
sensitivityJR, 2, 12, 15, 15, 22
sensitivityPStrat
 (sensitivityPStrat-package), 2
 sensitivitySGD, 2, 18, 19, 25
 sensitivitySGL, 2, 12, 15, 22, 22
 Surv. 3, 22, 25
 vaccine.trial, 26
 vector, 6