mlr3: Machine Learning in R - Next Generation

Efficient, object-oriented programming on the building blocks of machine learning. Provides 'R6' objects for tasks, learners, resamplings, and measures. The package is geared towards scalability and larger datasets by supporting parallelization and out-of-memory data-backends like databases. While 'mlr3' focuses on the core computational operations, add-on packages provide additional functionality.

Version: 0.1.3
Depends: R (≥ 3.1.0)
Imports: backports, checkmate (≥ 1.9.3), data.table, digest, lgr (≥ 0.3.0), Metrics, mlbench, mlr3misc (≥ 0.1.3), paradox, uuid, R6
Suggests: callr, datasets, evaluate, future (≥ 1.9.0), future.apply (≥ 1.1.0), future.callr, Matrix, rpart, testthat, titanic
Published: 2019-09-18
Author: Michel Lang ORCID iD [cre, aut], Bernd Bischl ORCID iD [aut], Jakob Richter ORCID iD [aut], Patrick Schratz ORCID iD [aut], Giuseppe Casalicchio ORCID iD [ctb], Stefan Coors ORCID iD [ctb], Quay Au ORCID iD [ctb], Martin Binder [aut]
Maintainer: Michel Lang <michellang at gmail.com>
BugReports: https://github.com/mlr-org/mlr3/issues
License: LGPL-3
URL: https://mlr3.mlr-org.com, https://github.com/mlr-org/mlr3
NeedsCompilation: no
Materials: README NEWS
CRAN checks: mlr3 results

Downloads:

Reference manual: mlr3.pdf
Package source: mlr3_0.1.3.tar.gz
Windows binaries: r-devel: mlr3_0.1.3.zip, r-release: mlr3_0.1.3.zip, r-oldrel: mlr3_0.1.2.zip
OS X binaries: r-release: mlr3_0.1.3.tgz, r-oldrel: mlr3_0.1.3.tgz
Old sources: mlr3 archive

Reverse dependencies:

Reverse imports: mlr3db, mlr3filters, mlr3learners

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mlr3 to link to this page.