Package ‘longclust’

March 18, 2018

Type Package

Title Model-Based Clustering and Classification for Longitudinal Data

Version 1.2.2

Date 2018-03-18

Author Paul D. McNicholas [aut, cre],
K. Raju Jampani [aut] (May to Dec 2012),
Sanjeena Subedi [aut]

Maintainer Paul D. McNicholas <mcnicholas@math.mcmaster.ca>

Suggests mvtnorm

Description Clustering or classification of longitudinal data based on a mixture of multivariate t or Gaussian distributions with a Cholesky-decomposed covariance structure.

License GPL (>= 2)

LazyLoad yes

Repository CRAN

NeedsCompilation yes

Date/Publication 2018-03-18 21:30:18 UTC

R topics documented:

longclust-package .. 2
longclustEM .. 2
plot.longclust ... 4
print.longclust ... 5
summary.longclust 6

Index 8
longclustEM

Model-Based Clustering and Classification for Longitudinal Data

Description

This is a package for clustering or classification of longitudinal data based on a mixture of multivariate t or Gaussian distributions with a Cholesky-decomposed covariance structure.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>longclust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.2.2</td>
</tr>
<tr>
<td>Date:</td>
<td>2018-03-18</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2 or GPL-3</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

This package contains the function longclustEM.

Author(s)

P. D. McNicholas, K.R. Jampani and S. Subedi
Maintainer: Paul McNicholas <mcnicholas@math.mcmaster.ca>

See Also

Details, examples, and references are given under longclustEM.

longclustEM

Model-Based Clustering and Classification for Longitudinal Data

Description

Carries out model-based clustering or classification using multivariate t or Gaussian mixture models with Cholesky decomposed covariance structure. EM algorithms are used for parameter estimation and the BIC is used for model selection.

Usage

longclustEM(x, Gmin, Gmax, class=NULL, linearMeans = FALSE, modelSubset = NULL, initWithKMeans = FALSE, criteria = "BIC", equalDF = FALSE, gaussian=FALSE, userseed=1004)
Arguments

- **x**: A matrix or data frame such that rows correspond to observations and columns correspond to variables.
- **Gmin**: A number giving the minimum number of components to be used.
- **Gmax**: A number giving the maximum number of components to be used.
- **class**: If NULL then model-based clustering is performed. If a vector with length equal to the number of observations, then model-based classification is performed. In this latter case, the ith entry of class is either zero, indicating that the component membership of observation i is unknown, or it corresponds to the component membership of observation i.
- **linearmeans**: If TRUE, then means are modelled using linear models.
- **modelSubset**: A vector of strings giving the models to be used. If set to NULL, all models are used.
- **initWithKMeans**: If TRUE, the components are initialized using k-means algorithm.
- **criteria**: A string that denotes the criteria used for evaluating the models. Its value should be "BIC" or "ICL".
- **equalDF**: If TRUE, the degrees of freedom of all the components will be the same.
- **gaussian**: If TRUE, a mixture of Gaussian distributions is used in place of a mixture of t-distributions.
- **userseed**: The random number seed to be used.

Value

- **gbest**: The number of components for the best model.
- **zbest**: A matrix that gives the probabilities for any data element to belong to any component in the best model.
- **nubest**: A vector of gbest integers, that give the degrees of freedom for each component in the best model.
- **mubest**: A matrix containing the means of the components for the best model (one per row).
- **tbest**: A list of gbest matrices, giving the T matrices of the components for the best model.
- **dbest**: A list of gbest matrices, giving the D matrices of the components for the best model.

Author(s)

Paul D. McNicholas, K. Raju Jampani and Sanjeena Subedi

References

Examples

library(mvtnorm)
m1 <- c(23, 34, 39, 45, 51, 56)
S1 <- matrix(c(1.00, -0.90, 0.18, -0.13, 0.10, -0.05, -0.90,
 0.90, 1.00, -0.26, 0.18, -0.15, 0.07, -0.26,
 1.31, -0.26, 0.18, -0.15, 0.07, -0.26, 4.05, -2.84,
 2.27, -1.13, -0.13, 0.18, -2.84, 2.29, -1.83, 0.91, 0.10,
 -0.15, 2.27, -1.83, 3.46, -1.73, -0.05, 0.07, -1.13, 0.91,
 -1.73, 1.57), 6, 6)
m2 <- c(16, 18, 15, 17, 21, 17)
S2 <- matrix(c(1.00, 0.00, -0.50, -0.20, -0.20, 0.19, 0.00,
 2.00, 0.00, -1.20, -0.80, -0.36, -0.50, 0.00, 1.25, 0.10,
 -0.10, -0.39, -0.20, -1.20, 0.10, 2.76, 0.52, -1.22, -0.20,
 -0.80, -0.10, 0.52, 1.40, 0.17, 0.19, -0.36, -0.39, -1.22,
 0.17, 3.17), 6, 6)
m3 <- c(8, 11, 16, 22, 25, 28)
S3 <- matrix(c(1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
 1.00, -0.20, -0.64, 0.26, 0.00, 0.00, -0.20, 1.04, -0.17,
 -0.10, 0.00, 0.00, -0.64, -0.17, 1.50, -0.65, 0.00, 0.00,
 0.26, -0.10, -0.65, 1.32, 0.00, 0.00, 0.00, 0.00, 0.00,
 0.00, 1.00), 6, 6)
m4 <- c(12, 9, 8, 5, 4, 2)
S4 <- diag(c(1, 1, 1, 1, 1, 1))
data <- matrix(0, 40, 6)
data[1:10] <- rmvnorm(10, m1, S1)
data[11:20] <- rmvnorm(10, m2, S2)
data[21:30] <- rmvnorm(10, m3, S3)
data[31:40] <- rmvnorm(10, m4, S4)
clus <- longclustEM(data, 3, 5, linearMeans=TRUE)
summary(clus)
plot(clus, data)

plot.longclust Plots the components of the model.

Description

Displays a series of two plots, one containing all the components in different colors, and one containing subplots one per each component.

Usage

S3 method for class 'longclust'

plot(x, data, ...)

Arguments

- `x` An object of type longclust returned by longclustEM.
- `data` The data matrix used in computing clus.
- `...` Default arguments.
Author(s)
Paul D. McNicholas, K. Raju Jampani and Sanjeena Subedi

Examples

```r
library(mvtnorm)
m1 <- c(23, 34, 39, 45, 51, 56)
S1 <- matrix(c(1, 0.00, -0.90, 0.18, -0.13, 0.10, -0.05, -0.90,
              1.31, -0.26, 0.18, -0.15, 0.07, 0.18, -0.26, 4.05, -2.84,
              2.27, -1.13, -0.13, 0.18, -2.84, 2.29, -1.83, 0.91, 0.10,
              -0.15, 2.27, -1.83, 3.46, -1.73, -0.05, 0.07, -1.13, 0.91,
              -1.73, 1.57), 6, 6)
m2 <- c(16, 18, 15, 17, 21, 17)
S2 <- matrix(c(1, 0.00, -0.50, -0.20, -0.20, 0.19, 0.00,
              2.00, 0.00, -1.20, -0.80, -0.36, -0.50, 0.00, 1.25, 0.10,
              -0.10, -0.39, -0.20, -1.20, 0.10, 2.76, 0.52, -1.22, -0.20,
              -0.80, -0.10, 0.52, 1.40, 0.17, 0.19, -0.36, -0.39, -1.22,
              0.17, 3.17), 6, 6)
m3 <- c(0, 11, 16, 22, 25, 28)
S3 <- matrix(c(1, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
              -0.20, -0.64, 0.26, 0.00, 0.00, -0.20, 1.04, -0.17, -0.10,
              0.00, 0.00, -0.64, -0.17, 1.58, -0.65, 0.00, 0.00, 0.26, -0.10,
              -0.65, 1.32, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00), 6, 6)
m4 <- c(12, 9, 8, 5, 4, 2)
S4 <- diag(c(1, 1, 1, 1, 1, 1))
data <- matrix(0, 40, 6)
data[1:10,] <- rmvnorm(10, m1, S1)
data[11:20,] <- rmvnorm(10, m2, S2)
data[21:30,] <- rmvnorm(10, m3, S3)
data[31:40,] <- rmvnorm(10, m4, S4)
clus <- longclusEM(data, 3, 5, linearMeans=TRUE)
plot(clus, data)
```

print.longclus

Brief overview of the longclus object

Description

Prints the number of components, probably matrix, degrees of freedom and the component means of the computed best model.

Usage

```r
## S3 method for class 'longclus'
print(x, ...)```

Arguments

- `x` An object of type longclus, computed by longclusEM.
- `...` Default Arguments
Author(s)

Paul D. McNicholas, K. Raju Jampani and Sanjeena Subedi

Examples

```r
library(mvtnorm)
m1 <- c(23,34,39,45,51,56)
S1 <- matrix(c(1.00, -0.90, 0.18, -0.13, 0.10, -0.05, -0.90,
 -0.26, 0.18, -0.15, 0.07, 0.18, -0.26, 4.05, -2.84,
 2.27, -1.13, -0.13, 0.18, -2.84, 2.29, -1.83, 0.91, 0.10,
 -0.15, 2.27, -1.83, 3.46, -1.73, -0.05, 0.07, -1.13, 0.91,
 -1.73, 1.57), 6, 6)
m2 <- c(16,18,15,17,21,17)
S2 <- matrix(c(1.00, 0.00, -0.50, -0.20, -0.20, 0.19, 0.00, 2.00,
 0.00, -1.20, -0.80, -0.36, -0.50, 0.00, 1.25, 0.10, -0.10, -0.39,
 -0.20, -1.20, 0.10, 2.76, 0.52, -1.22, -0.20, -0.80, -0.10, 0.52,
 1.40, 0.17, 0.19, -0.36, -0.39, -1.22, 0.17, 3.17), 6, 6)
m3 <- c(8, 11, 16, 22, 25, 28)
S3 <- matrix(c(1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
 -0.20, -0.64, 0.26, 0.00, 0.00, -0.20, 1.04, -0.17, -0.10, 0.00,
 0.00, -0.64, -0.17, 1.50, -0.65, 0.00, 0.00, 0.26, -0.10, -0.65,
 1.32, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00), 6, 6)
m4 <- c(12, 9, 8, 5, 4, 2)
S4 <- diag(c(1,1,1,1,1,1))
data <- matrix(0, 40, 6)
data[1:10,] <- rmvnorm(10, m1, S1)
data[11:20,] <- rmvnorm(10, m2, S2)
data[21:30,] <- rmvnorm(10, m3, S3)
data[31:40,] <- rmvnorm(10, m4, S4)
clus <- longclustEM(data, 3, 5, linearMeans=TRUE)
print(clus)

The function is currently defined as
function (tch, ...) {
 cat("Number of Clusters:", tch$Gbest, "\n")
 cat("z:\n")
 print(tch$zbest)
 cat("\n")
 for (g in 1:tch$Gbest) {
 cat("Cluster: ", g, "\n")
 cat("v:", tch$mubest[g], "\n")
 cat("mean:", tch$mubest[g,], "\n"
 }
}
```

summary.longclust  Summary of the longclust object
**summary.longclus**

**Description**

Prints all the items in the object.

**Usage**

```r
S3 method for class 'longclus'
summary(object, ...)
```

**Arguments**

- `object` An object of type longclus, returned by longclusEM.
- `...` Default arguments.

**Author(s)**

Paul D. McNicholas, K. R. Jampani and Sanjeena Subedi

**Examples**

```r
library(mvtnorm)
m1 <- c(23, 34, 39, 45, 51, 56)
S1 <- matrix(c(1.00, 0.90, 0.18, -0.13, 0.10, -0.05, -0.90,
 1.31, -0.26, 0.18, -0.15, 0.07, 0.18, -0.26, 4.05, -2.84,
 2.27, -1.13, -0.13, 0.18, -2.84, 2.29, -1.83, 0.91, 0.10,
 -0.15, 2.27, -1.83, 3.46, -1.73, -0.05, 0.07, -1.13, 0.91,
 -1.73, 1.57), 6, 6)
m2 <- c(16, 18, 15, 17, 21, 17)
S2 <- matrix(c(1.00, 0.00, -0.50, -0.20, -0.20, 0.19, 0.00,
 2.00, 0.00, -1.20, -0.80, -0.36, -0.50, 0.00, 1.25, 0.10,
 -0.10, -0.39, -0.20, -1.20, 0.10, 2.76, 0.52, -1.22, -0.20,
 -0.80, -0.10, 0.52, 1.40, 0.17, 0.19, -0.36, -0.39, -1.22,
 0.17, 3.17), 6, 6)
m3 <- c(8, 11, 16, 22, 25, 28)
S3 <- matrix(c(1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
 1.00, -0.20, -0.64, 0.26, 0.00, 0.00, -0.20, 1.04, -0.17,
 -0.10, 0.00, 0.00, -0.64, -0.17, 1.50, -0.65, 0.00, 0.00,
 0.26, -0.10, -0.65, 1.32, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
 0.00, 1.00), 6, 6)
m4 <- c(12, 9, 8, 5, 4, 2)
S4 <- diag(c(1, 1, 1, 1, 1, 1))
data <- matrix(0, 40, 6)
data[1:10,] <- rmvnorm(10, m1, S1)
data[11:20,] <- rmvnorm(10, m2, S2)
data[21:30,] <- rmvnorm(10, m3, S3)
data[31:40,] <- rmvnorm(10, m4, S4)
clus <- longclusEM(data, 3, 5, linearMeans=TRUE)
summary(clus)
Index

longclus (longclus-package), 2
longclus-package, 2
longclusEM, 2, 2

plot.longclus, 4
print.longclus, 5

summary.longclus, 6