latentnet-package

Description

The package latentnet is used to fit latent cluster random effect models, where the probability of a network g, on a set of nodes is a product of dyad probabilities, each of which is a GLM with linear component $\eta_{i,j} = \sum_{k=1}^{p} \beta_k X_{i,j,k} + d(Z_i, Z_j) + \delta_i + \gamma_j$, where X is an array of dyad covariates, β is a vector of covariate coefficients, Z_i is the latent space position of node i and $d(\cdot, \cdot)$ is a function of the two positions: either negative Euclidean ($-||Z_i - Z_j||$) or bilinear ($Z_i \cdot Z_j$), and δ and γ are vectors of sender and receiver effects. (Note that these are different from the eigenmodel of Hoff (2007) “Modeling homophily and stochastic equivalence in symmetric relational data”, fit by package eigenmodel.)

Details

The `ergmm` specifies models via: $g \sim \text{<model terms>}$ where g is a network object. For the list of possible `<model terms>`, see `terms.ergmm`. For the list of the possible dyad distribution families, see `families.ergmm`.

The arguments in the `ergmm` function specific to latent variable models are `ergmm.control`. See the help page for `ergmm` for the details.

The result of a latent variable model fit is an `ergmm` object. Hence the `summary`, print, and plot functions apply to the fits. The `plot.ergmm` function has many options specific to latent variable models. `contour, plot.ergmm` for the details.

Value

`ergmm` returns an object of class `‘ergmm’` that is a list.
References

See Also

ergmm, terms.ergmm

as.mcmc.list.ergmm

Convert an ERGMM Object to an MCMC list object for Diagnostics.

Description

Functions to extract a subset of MCMC-sampled variables from an object of class ergmm and construct an mcmc.list object.

Usage

S3 method for class 'list.ergmm'
as.mcmc(x, burnin = FALSE, which.vars = NULL,
 vertex.i = c(1), ...)

Arguments

x An object of class ergmm.

burnin If TRUE, generates an mcmc.list object for the burnin (if stored) instead of the main sampling run.

which.vars A named list mapping variable names to the indices to include. If given, overrides the defaults and all arguments that follow.

vertex.i A numeric vector of vertices whose latent space coordinates and random effects to include.

... Not used at this time.
control.ergmm

Auxiliary for Controlling ERGMM Fitting

Description
Auxiliary function as user interface for ergmm fitting. Typically only used when calling ergmm. It is used to set parameters that affect the sampling but do not affect the posterior distribution.

Usage

```r
control.ergmm(sample.size = 4000, burnin = 10000, interval = 10,
              threads = 1, kl.threads = 1, mle.maxit = 100, Z.delta = 0.6,
              RE.delta = 0.6, group.deltas = 0.4, pilot.runs = 4,
              pilot.factor = 0.8, pilot.discard.first = 0.5, target.acc.rate = 0.234,
              backoff.threshold = 0.05, backoff.factor = 0.2, accept.all = FALSE,
              store.burnin = FALSE, refine.user.start = TRUE)
```

```r
ergmm.control(sample.size = 4000, burnin = 10000, interval = 10,
               threads = 1, kl.threads = 1, mle.maxit = 100, Z.delta = 0.6,
               RE.delta = 0.6, group.deltas = 0.4, pilot.runs = 4,
               pilot.factor = 0.8, pilot.discard.first = 0.5, target.acc.rate = 0.234,
               backoff.threshold = 0.05, backoff.factor = 0.2, accept.all = FALSE,
               store.burnin = FALSE, refine.user.start = TRUE)
```
Arguments

- **sample.size**: The number of draws to be taken from the posterior distribution.
- **burnin**: The number of initial MCMC iterations to be discarded.
- **interval**: The number of iterations between consecutive draws.
- **threads**: The number of chains to run. If greater than 1, package snowFT is used to take advantage of any multiprocessing or distributed computing capabilities that may be available. Currently, only PVM (via rpvm) has been tested. Note, also, that PVM daemon needs to be started before the package is loaded.
- **kl.threads**: If greater than 1, uses an experimental parallelized label-switching algorithm. This is not guaranteed to work.
- **mle.maxit**: Maximum number of iterations for computing the starting values, posterior modes, MLEs, MKL estimates, etc..
- **Z.delta**: Standard deviation of the proposal for the jump in the individual latent space position, or its starting value for the tuner.
- **RE.delta**: Standard deviation of the proposal for the jump in the individual random effects values, or its starting value for the tuner.
- **group.deltas**: A scalar, a vector, or a matrix of an appropriate size, giving the initial proposal structure for the “group proposal” of a jump in covariate coefficients, scaling of latent space positions, and a shift in random effects. If a matrix of an appropriate size is given, it is used as a matrix of coefficients for a correlated proposal. If a vector is given, an independent proposal is used with the corresponding elements being proposal standard deviations. If a scalar is given, it is used as a multiplier for an initial heuristic for the proposal structure. It is usually best to leave this argument alone and let the adaptive sampling be used.
- **pilot.runs**: Number of pilot runs into which to split the burn-in period. After each pilot run, the proposal standard deviations and coefficients Z.delta, RE.delta, and group.deltas are reevaluated. If set to 0, disables adaptive sampling, and only makes a single burn-in run.
- **pilot.factor**: Initial value for the factor by which the coefficients gotten by a Cholesky decomposition of the pilot sample covariance matrix are multiplied.
- **pilot.discard.first**: Proportion of draws from the pilot run to discard for estimating acceptance rate and group proposal covariance.
- **target.acc.rate**: Target acceptance rate for the proposals used. After a pilot run, the proposal variances are adjusted upward if the acceptance rate is above this, and downward if below.
- **backoff.threshold**: If a pilot run’s acceptance rate is below this, redo it with drastically reduced proposal standard deviation. Set to 0 to disable this behavior.
- **backoff.factor**: Factor by which to multiply the relevant proposal standard deviation if its acceptance rate fell below the backoff threshold.
- **accept.all**: Forces all proposals to be accepted unconditionally. Use only in debugging proposal distributions!
store.burnin If TRUE, the samples from the burnin are also stored and returned, to be used in MCMC diagnostics.

refine.user.start If TRUE, the values passed to \code{ergmm} in the \code{user.start} argument can be updated by the mode-finding algorithm.

Value

A list with the arguments as components.

See Also

\code{ergmm}

Examples

```r
data(sampson)
## Shorter run than default.
samp.fit<-ergmm(samplike=euclidean(d=2,G=3)+receiver,
control=ergmm.control(burnin=1000,sample.size= 2000,interval=5))
```

davis

Southern Women Data Set (Davis) as a bipartite “network” object

Description

This is a data set of 18 women observed over a nine-month period. During that period, various subsets of these women had met in a series of 14 informal social events. The data recorded which women met for which events. The data is originally from Davis, Gardner and Gardner (1941) via UCINET and stored as a network object.

Details

This documentation is taken from Freeman (2003) in his usual lucid description. See the reference to the paper below:

In the 1930s, five ethnographers, Allison Davis, Elizabeth Stubbs Davis, Burleigh B. Gardner, Mary R. Gardner and J. G. St. Clair Drake, collected data on stratification in Natchez, Mississippi (Warner, 1988, p. 93). They produced the book cited below [DGG] that reported a comparative study of social class in black and in white society. One element of this work involved examining the correspondence between people’s social class levels and their patterns of informal interaction. DGG was concerned with the issue of how much the informal contacts made by individuals were established solely (or primarily) with others at approximately their own class levels. To address this question the authors collected data on social events and examined people’s patterns of informal contacts.
In particular, they collected systematic data on the social activities of 18 women whom they observed over a nine-month period. During that period, various subsets of these women had met in a series of 14 informal social events. The participation of women in events was uncovered using “interviews, the records of participant observers, guest lists, and the newspapers” (DGG, p. 149). Homans (1950, p. 82), who presumably had been in touch with the research team, reported that the data reflect joint activities like, “a day’s work behind the counter of a store, a meeting of a women’s club, a church supper, a card party, a supper party, a meeting of the Parent-Teacher Association, etc.”

This data set has several interesting properties. It is small and manageable. It embodies a relatively simple structural pattern, one in which, according to DGG, the women seemed to organize themselves into two more or less distinct groups. Moreover, they reported that the positions - core and peripheral - of the members of these groups could also be determined in terms of the ways in which different women had been involved in group activities. At the same time, the DGG data set is complicated enough that some of the details of its patterning are less than obvious. As Homans (1950, p. 84) put it, “The pattern is frayed at the edges.” And, finally, this data set comes to us in a two-mode ‘woman by event’ form. Thus, it provides an opportunity to explore methods designed for direct application to two-mode data. But at the same time, it can easily be transformed into two one-mode matrices (woman by woman or event by event) that can be examined using tools for one-mode analysis.

Because of these properties, this DGG data set has become something of a touchstone for comparing analytic methods in social network analysis. Davis, Gardner and Gardner presented an intuitive interpretation of the data, based in part on their ethnographic experience in the community. Then the DGG data set was picked up by Homans (1950) who provided an alternative intuitive interpretation. In 1972, Phillips and Conviser used an analytic tool, based on information theory, that provided a systematic way to reexamine the DGG data. Since then, this data set has been analyzed again and again. It reappears whenever any network analyst wants to explore the utility of some new tool for analyzing data.

If the source of the data set does not specified otherwise, this data set is protected by the Creative Commons License http://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set the original authors should be cited. In addition this package should be cited.

Source

References

ergmm

See Also

statnet, network, ergm, ergm

Examples

data(davis)
Fit a 2D 2-cluster fit and plot.
davis.fit<-ergmm(davis~euclidean(d=2,G=2)+rsociality)
plot(davis.fit,pie=TRUE,rand.eff="sociality")

dergmm

Fit a Latent Space Random Graph Model

Description

ergmm is used to fit latent space and latent space cluster random network models, as described by Hoff, Raftery and Handcock (2002), Handcock, Raftery and Tantrum (2005), and Krivitsky, Handcock, Raftery, and Hoff (2009). ergmm can return either a Bayesian model fit or the two-stage MLE.

Usage

ergmm(formula, response = NULL, family = "Bernoulli", fam.par = NULL,
control = control.ergmm(), user.start = list(), prior = ergmm.prior(),
tofit = c("mcmc", "mkl", "mkl.mbc", "procrustes", "klswitch"),
Z.ref = NULL, Z.K.ref = NULL, seed = NULL, verbose = FALSE)

Arguments

formula An formula object, of the form g ~ <term 1> + <term 2> ..., where g is a network object or a matrix that can be coerced to a network object, and <term 1>, <term 2>, etc., are each terms for the model. See terms.ergmm for the terms that can be fitted. To create a network object in , use the network function, then add nodal attributes to it using set.vertex.attribute if necessary. Note that, as in lm, the model will include an intercept term. This behavior can be overridden by including a -1 or +0 term in the formula, and a 1(mean=...,var=...) term can be used to set a prior different from default.

response An optional edge attribute that serves as the response variable. By default, presence (1) or absence (0) of an edge in g is used.

group A character vector specifying the conditional distribution of each edge value. See families.ergmm for the currently implemented families.

fam.par For those families that require additional parameters, a list.
ergmm

control
The MCMC parameters that do not affect the posterior distribution such as the sample size, the proposal variances, and tuning parameters, in the form of a named list. See control.ergmm for more information and defaults.

user.start
An optional initial configuration parameters for MCMC in the form of a list. By default, posterior mode conditioned on cluster assignments is used. It is permitted to only supply some of the parameters of a configuration. If this is done, the remaining parameters are fitted conditional on those supplied.

prior
The prior parameters for the model being fitted in the form of a named list. See terms.ergmm for the names to use. If given, will override those given in the formula terms, making it useful as a convenient way to store and reproduce a prior distribution. The list or prior parameters can also be extracted from an ERGMM fit object. See ergmm.prior for more information.

tofit
A character vector listing some subset of "pmode", "mcmc", "mkl", "mkl.mbc", "mle", "procrustes", and "klswitch", defaulting to all of the above, instructing ergmm what should be returned as a part of the ERGMM fit object. Omiting can be used to skip particular steps in the fitting process. If the requested procedure or output depends on some other procedure or output not explicitly listed, the dependency will be resolved automatically.

Z.ref
If given, used as a reference for Procrustes analysis.

Z.K.ref
If given, used as a reference for label-switching.

seed
If supplied, random number seed.

verbose
If this is TRUE (or 1), causes information to be printed out about the progress of the fitting, particularly initial value generation. Higher values lead to greater verbosity.

Value

ergmm returns an object of class ergmm containing the information about the posterior.

References

See Also

network, set.vertex.attributes, set.network.attributes, summary.ergmm, terms.ergmm, families.ergmm
Examples

```r
# Use 'data(package = "latentnet")' to list the data sets in a
# data(package="latentnet")
# Using Sampson's Monk data, lets fit a
# simple latent position model
# data(sampson)
samp.fit <- ergmm(samplike ~ euclidean(d=2))
# # See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit)
# # Plot the fit
# plot(samp.fit)
# Using Sampson's Monk data, lets fit a latent clustering random effects model
# samp.fit2 <- ergmm(samplike ~ euclidean(d=2, G=3)+rreceiver)
# # See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit2)
# # Plot the fit.
# plot(samp.fit2, pie=TRUE)
```

ergmm-class

Class of Fitted Exponential Random Graph Mixed Models

Description

A class `ergmm` to represent a fitted exponential random graph mixed model. The output of `ergmm`.

Details

There are methods `summary.ergmm`, `print.ergmm`, `plot.ergmm`, `predict.ergmm`, and `as.mcmc.list.ergmm`.

The structure of `ergmm` is as follows:

- `sample` An object of class `ergmm.par.list` containing the MCMC sample from the posterior. If the run had multiple threads, their output is concatenated.
- `mcmc.mle` A list containing the parameter configuration of the highest-likelihood MCMC iteration.
A list containing the highest-joint-density (conditional on cluster assignments) MCMC iteration.

- **mkl** A list containing the MKL estimate.
- **model** A list containing the model that was fitted.
- **prior** A list containing the information about the prior distribution used. It can be passed as parameter prior to `ergmm` to reproduce the prior in a new fit.
- **control** A list containing the information about the model fit settings that do not affect the posterior distribution. It can be passed as parameter control to `ergmm` to reproduce control parameters in a new fit.
- **mle** A list containing the MLE, conditioned on cluster assignments.
- **pmode** A list containing the posterior mode, conditioned on cluster assignments.
- **burnin.start** A list containing the starting value for the burnin.
- **main.start** A list (or a list of lists, for a multithreaded run) containing the starting value for the sampling.

See Also

- `ergmm`, `summary.ergmm`, `plot.ergmm`, `predict.ergmm`, `as.mcmc.list.ergmm`

ergmm-families

Edge Weight Distribution Families

Description

Family-link combinations supported by `ergmm`.

Details

Each supported family has a family of functions, of the form `pY`, `lpY`, `EPY`, `dlpY`, `deta`, `dlpYdispersion`, `lpYc`, `rsm`, followed by the family’s name, for the respective family’s name, representing the family’s likelihood, log-likelihood, expectation, derivative of log-likelihood with respect to the linear predictor, derivative of log-likelihood with respect to the dispersion parameter, log-normalizing-constant, and random sociomatrix generation functions.

On the C side, similar functions exist, but because of static typing, are also provided for “continuous” versions of those families. These should not be used on their own, but are used in estimating MKL positions from the posterior distribution.

Family-link combinations

<table>
<thead>
<tr>
<th>ID</th>
<th>C name</th>
<th>R name</th>
<th>Type</th>
<th>Family</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bernoulli_logit</td>
<td>Bernoulli.logit</td>
<td>Discrete</td>
<td>Bernoulli</td>
<td>logit</td>
</tr>
<tr>
<td>2</td>
<td>binomial_logit</td>
<td>binomial.logit</td>
<td>Discrete</td>
<td>binomial</td>
<td>logit</td>
</tr>
<tr>
<td>3</td>
<td>Poisson_log</td>
<td>Poisson.log</td>
<td>Discrete</td>
<td>Poisson</td>
<td>log</td>
</tr>
<tr>
<td>4</td>
<td>Bernoulli_cont_logit</td>
<td>NA</td>
<td>Continuous</td>
<td>Bernoulli</td>
<td>logit</td>
</tr>
<tr>
<td>5</td>
<td>binomial_cont_logit</td>
<td>NA</td>
<td>Continuous</td>
<td>binomial</td>
<td>logit</td>
</tr>
<tr>
<td>6</td>
<td>Poisson_cont_log</td>
<td>NA</td>
<td>Continuous</td>
<td>Poisson</td>
<td>log</td>
</tr>
<tr>
<td>7</td>
<td>normal_identity</td>
<td>normal.identity</td>
<td>Continuous</td>
<td>normal</td>
<td>identity</td>
</tr>
</tbody>
</table>
.link can be omitted when not ambiguous. Some families require an appropriate fam.par argument to be supplied to \texttt{ergmm}:

\textbf{binomial families} a mandatory \texttt{trials} parameter for the number of trials (same for every dyad) whose success the response counts represent

\textbf{normal} a mandatory \texttt{prior.var} and \texttt{prior.var.df} parameter for the prior scale and degrees of freedom of the variance of the dyad values

ergmm-terms

\textit{Model Terms for Latent Space Random Graph Model}

Description

Model terms that can be used in an \texttt{ergmm} formula and their parameter names.

Model Terms

The \texttt{latentnet} package itself allows only dyad-independent terms. In the formula for the model, the model terms are various function-like calls, some of which require arguments, separated by + signs.

\textit{Latent Space Effects}

\texttt{euclidean(d, G=0, var.mul=1/8, var=NULL, var.df.mul=1, var.df=NULL, mean.var.mul=1, mean.var=NULL, pk=NULL)}

\texttt{(Negative) Euclidean distance model term, with optional clustering.} Adds a term to the model equal to the negative Euclidean distance $-||Z_i - Z_j||$, where Z_i and Z_j are the positions of their respective actors in an unobserved social space. These positions may optionally have a finite spherical Gaussian mixture clustering structure. This term was previously called \texttt{latent} which now fits negative Euclidean latent space model with a warning. The parameters are as follows:

- \texttt{d} The dimension of the latent space.
- \texttt{G} The number of groups (0 for no clustering).
- \texttt{var.mul} In the absence of \texttt{var}, this argument will be used as a scaling factor for a function of average cluster size and latent space dimension to set \texttt{var}. To set it in the \texttt{prior} argument to \texttt{ergmm}, use \texttt{Z.var.mul}.
- \texttt{var} If given, the scale parameter for the scale-inverse-chi-squared prior distribution of the within-cluster variance. To set it in the \texttt{prior} argument to \texttt{ergmm}, use \texttt{Z.var}.
- \texttt{var.df.mul} In the absence of \texttt{var.df}, this argument is the multiplier for the square root of average cluster size, which serves in place of \texttt{var.df}. To set it in the \texttt{prior} argument to \texttt{ergmm}, use \texttt{Z.var.df.mul}.
- \texttt{var.df} The degrees of freedom parameter for the scale-inverse-chi-squared prior distribution of the within-cluster variance. To set it in the \texttt{prior} argument to \texttt{ergmm}, use \texttt{Z.var.df}.
- \texttt{mean.var.mul} In the absence of \texttt{mean.var}, the multiplier for a function of number of vertices and latent space dimension to set \texttt{mean.var}. To set it in the \texttt{prior} argument to \texttt{ergmm}, use \texttt{Z.mean.var.mul}.
mean.var The variance of the spherical Gaussian prior distribution of the cluster means. To set it in the prior argument to ergmm, use Z.mean.var.

pK.mul In the absence of pK, this argument is the multiplier for the square root of the average cluster size, which is used as pK. To set it in the prior argument to ergmm, use Z.pK.

pK The parameter of the Dirichlet prior distribution of cluster assignment probabilities. To set it in the prior argument to ergmm, use Z.pK.

The following parameters are associated with this term:

Z Numeric matrix with rows being latent space positions.

Z.K (when G > 0) Integer vector of cluster assignments.

Z.mean (when G > 0) Numeric matrix with rows being cluster means.

Z.var (when G > 0) Depending on the model, either a numeric vector with within-cluster variances or a numeric scalar with the overal latent space variance.

Z.pK (when G > 0) Numeric vector of probabilities of a vertex being in a particular cluster.

bilinear(d, G=0, var.mul=1/8, var=NULL, var.df.mul=1, var.df=NULL, mean.var.mul=1, mean.var=NULL, pk=1/8)

Bilinear latent model term, with optional clustering. Adds a term to the model equal to the inner product of the latent positions: \(Z_i \cdot Z_j \), where \(Z_i \) and \(Z_j \) are the positions of their respective actors in an unobserved social space. These positions may optionally have a finite spherical Gaussian mixture clustering structure. Note: For a bilinear latent space effect, two actors being closer in the clustering sense does not necessarily mean that the expected value of a tie between them is higher. Thus, a warning is printed when this model is combined with clustering. The parameters are as follows:

d The dimension of the latent space.

G The number of groups (0 for no clustering).

var.mul In the absence of var, this argument will be used as a scaling factor for a function of average cluster size and latent space dimension to set var. To set it in the prior argument to ergmm, use Z.var.mul.

var If given, the scale parameter for the scale-inverse-chi-squared prior distribution of the within-cluster variance. To set it in the prior argument to ergmm, use Z.var.

var.df.mul In the absence of var.df, this argument is the multiplier for the square root of average cluster size, which serves in place of var.df. To set it in the prior argument to ergmm, use Z.var.df.mul.

var.df The degrees of freedom parameter for the scale-inverse-chi-squared prior distribution of the within-cluster variance. To set it in the prior argument to ergmm, use Z.var.df.

mean.var.mul In the absence of mean.var, the multiplier for a function of number of vertices and latent space dimension to set mean.var. To set it in the prior argument to ergmm, use Z.mean.var.mul.

mean.var The variance of the spherical Gaussian prior distribution of the cluster means. To set it in the prior argument to ergmm, use Z.mean.var.

pK.mul In the absence of pK, this argument is the multiplier for the square root of the average cluster size, which is used as pK. To set it in the prior argument to ergmm, use Z.pK.

pK The parameter of the Dirichlet prior distribution of cluster assignment probabilities. To set it in the prior argument to ergmm, use Z.pK.

The following parameters are associated with this term:

Z Numeric matrix with rows being latent space positions.
Z.K (when G > 0) Integer vector of cluster assignments.
Z.mean (when G > 0) Numeric matrix with rows being cluster means.
Z.var (when G > 0) Depending on the model, either a numeric vector with within-cluster variances or a numeric scalar with the overall latent space variance.
Z.pk (when G > 0) Numeric vector of probabilities of a vertex being in a particular cluster.

Actor-specific effects

rsender(var=1, var.df=3) Random sender effect. Adds a random sender effect to the model, with normal prior centered around 0 and a variance that is estimated. Can only be used on directed networks. The parameters are as follows:
var The scale parameter for the scale-inverse-chi-squared prior distribution of the sender effect variance. To set it in the prior argument to `ergmm`, use sender.var.
var.df The degrees of freedom parameter for the scale-inverse-chi-squared prior distribution of the sender effect variance. To set it in the prior argument to `ergmm`, use sender.var.df.

The following parameters are associated with this term:
sender Numeric vector of values of each vertex’s random sender effect.
sender.var Random sender effect’s variance.

rreceiver(var=1, var.df=3) Random receiver effect. Adds a random receiver effect to the model, with normal prior centered around 0 and a variance that is estimated. Can only be used on directed networks. The parameters are as follows:
var The scale parameter for the scale-inverse-chi-squared prior distribution of the receiver effect variance. To set it in the prior argument to `ergmm`, use receiver.var.
var.df The degrees of freedom parameter for the scale-inverse-chi-squared prior distribution of the receiver effect variance. To set it in the prior argument to `ergmm`, use receiver.var.df.

The following parameters are associated with this term:
receiver Numeric vector of values of each vertex’s random receiver effect.
receiver.var Random receiver effect’s variance.

rsociality(var=1, var.df=3) Random sociality effect. Adds a random sociality effect to the model, with normal prior centered around 0 and a variance that is estimated. Can be used on either a directed or an undirected network. The parameters are as follows:
var The scale parameter for the scale-inverse-chi-squared prior distribution of the sociality effect variance. To set it in the prior argument to `ergmm`, use sociality.var.
var.df The degrees of freedom parameter for the scale-inverse-chi-squared prior distribution of the sociality effect variance. To set it in the prior argument to `ergmm`, use sociality.var.df.

The following parameters are associated with this term:
sociality Numeric vector of values of each vertex’s random sociality effect.
sociality.var Random sociality effect’s variance.

Fixed Effects
Each coefficient for a fixed effect covariate has a normal prior whose mean and variance are set by the mean and var parameters of the term. For those formula terms that add more than one covariate,
a vector can be given for mean and variance. If not, the vectors given will be repeated until the needed length is reached.

ergmm can use model terms implemented for the *ergm* package and via the *ergm.userterms* API. See *ergm-terms* for a list of available terms. If you wish to specify the prior mean and variance, you can add them to the call. E.g.,

```
TERMNAME(...) mean=0, var=9).
```

where ... are the arguments for the *ergm* term, will initialize TERMNAME with prior mean of 0 and prior variance of 9.

Some caveats:

- *ergm* has a binary and a valued mode. Regardless of the family used, the binary variant of the *ergm* term will be used in the linear predictor of the model.
- *ergm* does not support modeling self-loops, so terms imported in this way will always have predictor \(x[i,i]=0\). This should not affect most situations, but if you absolutely must model self-loops and non-self-edges in one term, use the deprecated terms below.
- *latentnet* only fits models with dyadic independence. Terms that induce dyadic dependence (e.g., triangles) can be used, but then the likelihood of the model will, effectively, be replaced with pseudolikelihood. (Note that under dyadic independence, the two are equal.)

Each parameter in this section adds one element to beta vector.

1(mean=0, var=9) **a.k.a. intercept a.k.a. Intercept**. This term serves as an intercept term, is included by default (though, as in *lm*, it can be excluded by adding `-1` into the model formula). It adds one covariate to the model, for which \(x[i,j]=1\) for all \(i\) and \(j\).

It can be used explicitly to set prior mean and variance for the intercept term.

This term differs from the *ergm*’s edges term if \(g\) has self-loops.

loopcov(attrnameL mean=0, var=9) **Covariate effect on self-loops.** attrname is a character string giving the name of a numeric (not categorical) attribute in the network’s vertex attribute list. This term adds one covariate to the model, for which \(x[i,i]=\text{attrname}(i)\) and \(x[i,j]=0\) for \(i!=j\). This term only makes sense if \(g\) has self-loops.

loopfactor(attrname, base=1, mean=0, var=9) **Factor attribute effect on self-loops.** The attrname argument is a character vector giving one or more names of categorical attributes in the network’s vertex attribute list. This term adds multiple covariates to the model, one for each of (a subset of) the unique values of the attrname attribute (or each combination of the attributes given). Each of these covariates has \(x[i,i]=1\) if attrname(i)==l, where \(l\) is that covariate’s level, and \(x[i,j]=0\) otherwise. To include all attribute values se base=0 – because the sum of all such statistics equals twice the number of self-loops and hence a linear dependency would arise in any model also including loops. Thus, the base argument tells which value(s) (numbered in order according to the sort function) should be omitted. The default value, base=1, means that the smallest (i.e., first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels “orange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one for “pear”, then set “banana” and “orange” to the base (remember to sort the values first) by using nodefactor(“fruit”, base=2:3). For an analogous term for quantitative vertex attributes, see nodecov.attrname is a character string giving the name of a numeric (not categorical) attribute in the network’s vertex attribute list. This term adds one covariate to the model, for which \(x[i,i]=\text{attrname}(i)\) and \(x[i,j]=0\) for \(i!=j\). This term only makes sense if \(g\) has self-loops.
latentcov(x, attrname=NULL, mean=0, var=9) Edge covariates for the latent model.
Depreciated for networks without self-loops. Use edgecov instead.
x is either a matrix of covariates on each pair of vertices, a network, or an edge attribute on
G; if the latter, optional argument attrname provides the name of the edge attribute to use
for edge values. latentcov can be called more than once, to model the effects of multiple
covariates. Note that some covariates can be more conveniently specified using the following
terms.
sendercov(attrname, force.factor=FALSE, mean=0, var=9) Sender covariate effect.
Depreciated for networks without self-loops. Use nodeocov, nodeofactor, nodecov or nodefactor
instead.
attrname is a character string giving the name of an attribute in the network’s vertex attribute list. If the attribute is numeric, This term adds one covariate to the model equaling
attrname(i). If the attribute is not numeric or force.factor==TRUE, this term adds p − 1
covariates to the model, where p is the number of unique values of attrname. The kth such
covariate has the value attrname(i) == value(k+1), where value(k) is the kth smallest
unique value of the attrname attribute. This term only makes sense if G is directed.
receivercov(attrname, force.factor=FALSE, mean=0, var=9) Receiver covariate effect.
Depreciated for networks without self-loops. Use nodeicov, nodeifactor, nodecov or nodefactor
instead.
attrname is a character string giving the name of an attribute in the network’s vertex attribute list. If the attribute is numeric, This term adds one covariate to the model equaling
attrname(j). If the attribute is not numeric or force.factor==TRUE, this term adds p − 1
covariates to the model, where p is the number of unique values of attrname. The kth such
covariate has the value attrname(j) == value(k+1), where value(k) is the kth smallest
unique value of the attrname attribute. This term only makes sense if G is directed.
socialitycov(attrname, force.factor=FALSE, mean=0, var=9) Sociality covariate effect.
Depreciated for networks without self-loops. Use nodecov instead.
attrname is a character string giving the name of an attribute in the network’s vertex attribute list. If the attribute is numeric, This term adds one covariate to the model equaling
attrname(i)+attrname(j). If the attribute is not numeric or force.factor==TRUE, this
term adds p − 1 covariates to the model, where p is the number of unique values of attrname.
The kth such covariate has the value attrname(i) == value(k+1) + attrname(j) == value(k+1),
where value(k) is the kth smallest unique value of the attrname attribute. This term makes
sense whether or not G is directed.

See Also

ergmm terms-ergm

dergmm.drawpie Draw a pie chart at a specified location.

Description

Used by plot.ergmm to draw pie charts to visualize soft clusterings when pie=TRUE. Exported as a
courtesy to dependent packages.
Usage

ergmm.drawpie(center, radius, probs, n = 50, cols = 1:length(probs), ...)

Arguments

center A numeric vector of length 2, specifying the horizontal and the vertical coordinates of its center.
radius Radius of the pie chart.
probs A vector of probabilities/weights of each sector; they do not have to sum to 1.
n Number of points to use to approximate the "circle".
cols A vector of colors to use for the sectors.
... Additional arguments, currently unused.

Author(s)

See COPYRIGHT.

See Also

plot.ergmm

Examples

plot(c(0,sum(1:11))*2,c(-10,10),type="n",asp=1)
for(i in 1:10) ergmm.drawpie(c(sum(1:1)*2,0), radius=i, probs=1:(i+1))

ergmm.par.list A List of ERGMM Parameter Configuration

Description

A class ergmm.par.list to represent a series of parameter configurations for the same exponential random graph mixed model.

Usage

as.ergmm.par.list(x, ...)

S3 method for class 'ergmm.par.list'
x[i]

S3 method for class 'ergmm.par.list'
length(x)
S3 method for class 'ergmm.par.list'

`x[[i]]`

S3 method for class 'ergmm.par.list'

`unstack(x, ...)`

Arguments

- `x`: an `ergm.par.list` object.
- `...`: extra arguments, currently unused.
- `i`: index of the iteration to extract.

Details

- `[` operator with a numeric or integer index returns a list with the configuration with that index. `[` operator given a numeric vector returns a `ergmm.par.list` object with the subset of configurations with the indices given.

The structure of `ergmm.par.list` is derived from named lists, with each entry having an additional dimension (always the first one), indexed by configuration. That is, scalars become vectors, vectors become matrices with the original vectors in rows, and matrices become 3-dimensional arrays, with the original matrices indexed by their first dimension. See `terms.ergmm` for common elements of these configurations. In some cases, such as when representing MCMC or optimization output, the object may also have some of the following elements:

- `nlp`: $\log p(Y, Z, \beta, \mu, \sigma, \delta, \gamma, \sigma_\delta, \sigma_\gamma, |K)$, the joint probability/density of network, the covariate coefficients, the latent space positions and parameters, and the random effects and their variances, conditional on cluster assignments.

- `lpY`: $\log p(Y | \ldots)$, depending on the model, the log-probability or log-density of the network conditional on all the parameters.

- `lpZ`: $\log p(Z | \mu, \sigma, K)$, the log-density of latent space positions conditional on latent space or cluster parameters and cluster assignments.

- `lpBeta`: $\log p(\beta)$, the prior log-density of the covariate coefficients.

- `lPRE`: $\log p(\delta, \gamma | \sigma_\delta, \sigma_\gamma)$, the log-density of all random effects, conditional on their respective variances.

- `lPLV`: $\log p(\mu, \sigma)$, the prior log-density of latent space or cluster parameters (but not that of the cluster assignments).

- `lPREV`: $\log p(\sigma_\delta, \sigma_\gamma)$, the prior log-density of all random effect variances.

See Also

- `ergmm`
ergmm.prior

Auxiliary for Setting the ERGMM Prior

Description

Auxiliary function as user interface for `ergmm` prior specification. Typically only used when calling `ergmm`. It is used to supply the parameters of the prior distribution of the model, to overwrite those specified in the model formula, and to supply miscellaneous prior parameters.

Usage

```
ergmm.prior(..., adjust.beta.var = TRUE)
```

Arguments

- `...` Prior distribution parameters. See `terms.ergmm` for more information.
- `adjust.beta.var` A shortcut: whether the prior variance for each covariate coefficient should be divided by the mean square of that covariate. This adjustment affects those variances specified in the formula or by default, but not those specified through the `prior=` argument.

Value

A list with the arguments as elements.

See Also

- `ergmm`, `terms.ergmm`

gof.ergmm

Conduct Goodness-of-Fit Diagnostics on a Exponential Family Random Graph Mixed Model Fit

Description

`gof` calculates p-values for geodesic distance, degree, and reachability summaries to diagnose the goodness-of-fit of exponential family random graph mixed models. See `ergmm` for more information on these models.

Usage

```
## S3 method for class 'ergmm'
gof(object, ..., nsim = 100, GOF = ~iddegree + odegree +
    distance, verbose = FALSE)
```
Arguments

object an \texttt{ergmm} object (returned by \texttt{ergmm}).

\ldots Additional arguments, to be passed to lower-level functions in the future.

nsim The number of simulations to use for the MCMC \textit{p}-values. This is the size of the sample of graphs to be randomly drawn from the distribution specified by the object on the set of all graphs.

GOF formula; an formula object, of the form \texttt{~ <model terms>} specifying the statistics to use to diagnosis the goodness-of-fit of the model. They do not need to be in the model formula specified in \texttt{formula}, and typically are not. Examples are the degree distribution ("degree"), minimum geodesic distances ("dist"), and shared partner distributions ("espartners" and "dspartners"). For the details on the possible \texttt{<model terms>}, see \texttt{ergm-terms}.

verbose Provide verbose information on the progress of the simulation.

Details

A sample of graphs is randomly drawn from the posterior of the \texttt{ergmm}.

A plot of the summary measures is plotted. More information can be found by looking at the documentation of \texttt{ergm}.

Value

gof and \texttt{gof.ergmm} return an object of class \texttt{gofobject}. This is a list of the tables of statistics and \textit{p}-values. This is typically plotted using \texttt{plot.gofobject}.

See Also

\texttt{ergmm, ergmm (object), ergm, network, simulate.ergmm, plot.gofobject}

Examples

```r
# data(sampson)
#
# test the gof.erg function
#
samplike.fit <- ergmm(samplike ~ euclidean(d=2,G=3),
                control=ergmm.control(burnin=1000,interval=5))
samplike.fit
summary(samplike.fit)

# Plot the probabilities first
#
monks.gof <- gof(samplike.fit)
monks.gof
#
```
Conduct MCMC diagnostics on an ERGMM fit

Description

This function creates simple diagnostic plots for the MCMC sampled statistics produced from a fit. It also prints the Raftery-Lewis diagnostics, indicates if they are sufficient, and suggests the run length required.

Usage

```r
mcmc.diagnostics(object, which.diags = c("cor", "acf", "trace", "raftery"), burnin = FALSE, which.vars = NULL, vertex.i = c(1), ...)
```

Arguments

- `object`: An object of class `ergmm`.
- `which.diags`: A list of diagnostics to produce. "cor" is the correlation matrix of the statistics, "acf" plots the autocorrelation functions, "trace" produces trace plots and density estimates, and "raftery" produces the Raftery-Lewis statistics.
- `burnin`: If not FALSE, rather than perform diagnostics on the sampling run, performs them on the pilot run whose index is given.
- `which.vars`: A named list mapping variable names to the indices to include. If given, overrides the defaults and all arguments that follow.
- `vertex.i`: A numeric vector of vertices whose latent space coordinates and random effects to include.
- `...`: Additional arguments. None are supported at the moment.

Details

Produces the plots per `which.diags`. Autocorrelation function that is printed if "acf" is requested is for lags 0 and interval.
merge.ergmm

Description

A `merge` method for `ergmm` objects, constructing an `ergmm` object containing the combined MCMC output (and derived estimates) of several `ergmm` objects produced with the same input parameters but different starting values, random seeds, etc..

Usage

```r
## S3 method for class 'ergmm'
merge(x, y, ..., verbose = FALSE)
```

Arguments

- `x`
The first `ergmm` object to be merged.
- `y`
The second `ergmm` object to be merged.
- `...`
Additional `ergmm` objects to be merged.
- `verbose`
If TRUE, marks the progress of merging.
Value

An object of class `ergmm`.

See Also

`ergmm.object.ergmm`

Examples

data(sampson)
Run two short MCMC-based fits.
samp.fit1 <- ergmm(samplike ~ euclidean(d=2, G=3),
 control=ergmm.control(burnin=1000, interval=10, sample.size=2000))
samp.fit2 <- ergmm(samplike ~ euclidean(d=2, G=3),
 control=ergmm.control(burnin=1000, interval=10, sample.size=2000))

Combine them, and summarize the result.
samp.fit <- merge(samp.fit1, samp.fit2)
summary(samp.fit)
use.rgl = FALSE, vertex.3d.cex = 1/20, edge.plot3d = TRUE,
suppress.center = FALSE, density.par = list()

Arguments

x an R object of class `ergmm`. See documentation for `ergmm`.

... Other optional arguments passed to the `plot.network` function.

what Character vector, integer, or a list that specifies the point estimates to be used. Can be one of the following:

"mkl" This is the default. Plots the Minimum Kulback-Leibler divergence values.

"start","burnin.start" Plots the starting configuration.

"sampling.start" Plots the starting configuration of the sampling phase (the last burnin configuration).

"mle" Plots the maximum likelihood estimates. Random effects are treated as fixed.

"pmean" Plots the posterior means.

"pmode" Plots the conditional posterior mode.

"cloud" Plots the “cloud” of latent space position draws, with their cluster colors.

"density" Plots density and contours of the posterior latent positions, and, in cluster models, each cluster.

list Plots the configuration contained in the list.

integer Plots the configuration of whatth MCMC draw stored in x.

main, vertex.cex, vertex.col, xlim, ylim, vertex.sides,
Arguments passed to `plot.network`, whose defaults differ from those of `plot.network`.

zlim, zlab Limits and labels for the third latent space dimension or principal component, if use.rgl=TRUE.

object.scale, pad, edge.col, xlab, ylab Arguments passed to `plot.network`, whose defaults differ from those of `plot.network`.

cluster.col A vector of colors used to distinguish clusters in a latent cluster model.

print.formula Whether the formula based on which the x was fitted should be printed under the main title. Defaults to TRUE.

Z.ref If given, rotates the the latent positions to the nearest configuration to this one before plotting.

Z.K.ref If given, relabels the clusters to the nearest configuration to this one before plotting.

zoom.on If given a list of vertex indices, sets the plotting region to the smallest that can fit those vertices.

pie For latent clustering models, each node is drawn as a pie chart representing the probabilities of cluster membership.

labels Whether vertex labels should be displayed. Defaults to FALSE.
A character vector selecting "sender", "receiver", "sociality", or "total" random effects. Each vertex is scaled such that its area is proportional to the odds ratio due to its selected random effect.

If not NULL and rand.eff is given, limits the scaling of the plotting symbol due to random effect to the given value.

Whether cluster means are plotted for latent cluster models. The "+" character is used. Defaults to TRUE.

Whether circles with radius equal to the square root of posterior latent or intra-cluster variance estimates are plotted. Defaults to TRUE.

Whether axes should not be drawn. Defaults to FALSE. (Axes are drawn.)

For 1D latent space fits, it often helps to jitter the positions for visualization. This option controls the amount of jitter.

Controls whether the edges in 1D latent space fits are plotted as curves. Defaults to TRUE.

Whether the package rgl should be used to plot fits for latent space dimension 3 or higher in 3D. Defaults to FALSE. If set to TRUE, argument pie has no effect.

Controls the size of the plotting symbol when use.rgl=TRUE.

If TRUE (the default) edges or arcs in a 3D plot will be drawn. Otherwise, only vertices and clusters.

Suppresses the plotting of "+" at the origin. Defaults to FALSE.

A list of optional parameters for density plots:

Whether the overall density of latent space positions should be plotted. Defaults to TRUE.

Whether the densities of latent space positions broken down by cluster should be plotted. Defaults to TRUE.

When plotting multiple clusters’ densities, passed to par

At this time, no plotting non-latent-space model fits is not supported.

Plots the results of an ergmm fit.

More information can be found by looking at the documentation of ergmm.

For bipartite networks, the events are marked with a bullet (small black circle) inside the plotting symbol.

If applicable, invisibly returns the vertex positions plotted.

ergmm, ergmm.object, network, plot.network, plot
Examples

Using Sampson's Monk data, let's fit a # simple latent position model # data(sampson) # # Using Sampson's Monk data, let's fit a # latent clustering random effects model # Store the burn-in.
samp.fit <- ergmm(samplike ~ euclidean(d=2, G=3)+rreceiver,
 control=ergmm.control(store.burnin=TRUE))

See if we have convergence in the MCMC mcmc.diagnostics(samp.fit)
We can also plot the burn-in:
for(i in samp.fit$control$pilot.runs) mcmc.diagnostics(samp.fit,burnin=i)

Plot the resulting fit.
plot(samp.fit,labels=TRUE,rand.eff="receiver")
plot(samp.fit,pie=TRUE,rand.eff="receiver")
plot(samp.fit,what="pmean",rand.eff="receiver")
plot(samp.fit,what="cloud",rand.eff="receiver")
plot(samp.fit,what="density",rand.eff="receiver")
plot(samp.fit,what=5,rand.eff="receiver")

Not run:
Fit a 3D latent space model to Sampson's Monks
samp.fit3 <- ergmm(samplike ~ euclidean(d=3))

Plot the first two principal components of the # latent space positions
plot(samp.fit,use.rgl=FALSE)
Plot the resulting fit in 3D
plot(samp.fit,use.rgl=TRUE)

End(Not run)

predict.ergmm

Predicted Dyad Values for an ERGMM.

Description

Returns a matrix of expected dyad values based on an ERGMM fit.
Usage

S3 method for class 'ergmm'
predict(object, ..., type = "post")

Arguments

object An object of class ergmm.

... Additional arguments. Currently unused.

type One of "mkl", "start", "mle", "pmean", "mkl", "pmode", "post", an index of the iteration to use, or a list, for the configuration of parameters based on which the prediction is made. An exception is "post", which computes the expected dyad values integrated over the posterior.

Value

A sociomatrix of predicted values. Note that predictions are made for unobserved values (whether structural zeros or unobserved dyads).

See Also

ergmm

Examples

data(sampson)
monks.fit<-'ergmm(samplike=euclidean(d=2,G=3),tofit="mcmc")
heatmap(predict(monks.fit),Rowv=NA,Colv=NA)

simulate.ergmm Draw from the distribution of an Exponential Random Graph Mixed Model

Description

If passed a ergmm fit object, simulate is used to simulate networks from the posterior of an exponential random graph mixed model fit. Alternatively, a ergmm.model can be passed to simulate based on a particular parametr configuration.
Usage

```r
## S3 method for class 'ergmm'
simulate(object, nsim = 1, seed = NULL, ...)

## S3 method for class 'ergmm.model'
simulate(object, nsim = 1, seed = NULL, par, 
prior = list(), ...)
```

Arguments

- `object` either an object of class `ergmm` for posterior simulation, or an object of class `ergmm.model` for a specific model.
- `nsim` number of networks to draw (independently)
- `seed` random seed to use; defaults to using the current state of the random number generator
- `...` Additional arguments. Currently unused.
- `par` a list with the parameter configuration based on which to simulate
- `prior` a list with the prior distribution parameters that deviate from their defaults

Details

A sample of networks is randomly drawn from the specified model. If a needed value of `par` is missing, it is generated from its prior distribution.

Value

If `nsim = 1`, `simulate` returns an object of class `network`. Otherwise, an object of class `network.series` that is a list consisting of the following elements:

- `$formula` The formula used to generate the sample.
- `$networks` A list of the generated networks.

See Also

`ergmm`, `network`, `print.network`

Examples

```r
# Fit a short MCMC run: just the MCMC.
#
data(sampson)
gest <- ergmm(samplike ~ euclidean(d=2,g=3),
              control=ergmm.control(burnin=100,interval=5,sample.size=100),tofit="mcmc")
#
# Draw from the posterior
#
```
```r
g.sim <- simulate(gest)
plot(g.sim)
#
# Draw from the first draw from the posterior
#
g.sim <- with(gest, simulate(model, par=sample[[1]], prior=prior))
plot(g.sim)
```

summary.ergmm

ERGMM Fit Summaries

Description

`summary.ergmm` produces a summary of an `ergmm` object, including point estimates, standard errors, and BIC calculation.

Usage

```r
## S3 method for class 'ergmm'
summary(object, point.est = c(if (!is.null(object[["mle"]]))
  "mle", if (!is.null(object[["sample"]])) c("pmean", "mkl")),
quantiles = c(0.025, 0.975), se = "mle" %in% point.est,
bic.eff.obs = c("ties", "dyads", "actors"), ...)
```

Arguments

- **object**
 - An `ergmm` object to be summarized.

- **point.est**
 - Point estimates to compute: a character vector with some subset of "mle", "pmean", "mkl", and "pmode". Defaults to a concatenation of "mle" (if fit), "pmean", and "mkl" (if MCMC was run).

- **quantiles**
 - Posterior quantiles (credible intervals) to compute.

- **se**
 - Whether to compute standard errors. Defaults to `TRUE` if MLE was fit.

- **...**
 - Additional arguments.

- **bic.eff.obs**
 - What effective sample size to use for BIC calculation?
 - "ties" the number of non-missing ties in the network. This is the approach recommended by Handcock et al. (2007) and the default. Not well-defined for valued networks.
 - "dyads" the number of non-missing dyads (potential ties) in the network.
 - "actors" the number of actors in the network. The default prior to 2.7.0.
 - **a number** to specify a specific sample size.
 - **NULL** Don’t compute the BIC at all. Mostly for internal use.
Details

Note that BIC computed for the random effects models uses the same formulation as Handcock et al., so it is likely correct, but has not been peer-reviewed.

This BIC can be (reasonably) safely used to select the number of clusters or which fixed effects to include in the model. It is not clear whether it is appropriate to use this BIC to select the dimension of latent space and whether or not to include random actor effects. These considerations are independent of the bug described below.

Prior to version 2.7.0, there was a bug in BIC calculation that used \(p + n(d + r + s) \) as the number of parameters in the likelihood (where \(p \) is the number of fixed effects, \(n \) the number of actors, \(d \), the latent space dimension, and \(r \) and \(s \) indicators of presence of sender and receiver (or sociality) effects). This value should have been just \(p \).

The following applications could have produced different results:

- Using the BIC to select latent space dimension.
- Using the BIC to decide whether or not to include random effects.

The following applications could not (i.e., would be off by a constant):

- Using the BIC to select the number of clusters.
- Using the BIC to select the fixed effects to be used.

Value

For summary, an object of class `summary.ergmm`. A print method is available.

The BICs are available as the element "bic" of the object returned.

`bic.ergmm` returns the BIC for the model directly.

References

See Also

`ergmm.object.ergmm`

Examples

data(sampson)

Fit the model for cluster sizes 1 through 4:
fits<-list(
 ergmm(samplike~euclidean(d=2,G=1)),
 ergmm(samplike~euclidean(d=2,G=2)),
 etc)
tribes

tribes

Read Highland Tribes

Description

A network of political alliances and enmities among the 16 Gahuku-Gama sub-tribes of Eastern Central Highlands of New Guinea, documented by Read (1954).

Format

An undirected network object with no loops, having the following attributes:

%v% "vertex.names" Character attribute with names of tribes.
%e% "pos" Logical attribute indicating an alliance relationship.
%e% "neg" Logical attribute indicating a hostile relationship ("rova").
%e% "sign" Numeric attribute coding -1 for enmity, 0 for no relationship, and 1 for alliance.
%e% "sign.012" Numeric attribute coding 0 for enmity, 1 for no relationship, and 2 for alliance.

Because of limitations of network objects, the object itself is a complete graph, and is thus meaningless if used directly or plotted.
Details

This network shows 3 clusters.

Source

References

Examples

data(tribes)
Only model positive ties:
tribes.fit<-ergmm(tribes~euclidean(d=2,G=3),response="pos")
Edge color must be set manually, for green ties to represent alliance
and for red ties to represent enmity.
plot(tribes.fit,edge.col=as.matrix(tribes,"pos",m="a")*3+as.matrix(tribes,"neg",m="a")*2,pie=TRUE)
Model both positive and negative ties:
tribes.fit3<-ergmm(tribes~euclidean(d=2,G=3),response="sign.012",
family="binomial.logit",fam.par=list(trials=2))
Edge color must be set manually, for green ties to represent alliance
and for red ties to represent enmity.
plot(tribes.fit3,edge.col=as.matrix(tribes,"pos",m="a")*3+as.matrix(tribes,"neg",m="a")*2,pie=TRUE)
Index

*Topic cluster
 ergmm-terms, 12
 simulate.ergmm, 27
 tribes, 31
*Topic datagen
 simulate.ergmm, 27
*Topic data
davis, 6
*Topic debugging
 as.mcmc.list.ergmm, 3
 mcmc.diagnostics.ergmm, 21
*Topic distribution
 predict.ergmm, 26
*Topic graphs
 as.mcmc.list.ergmm, 3
 control.ergmm, 4
 ergmm, 8
 ergmm-class, 10
 ergmm-families, 11
 ergmm-terms, 12
 ergmm.drawpie, 16
 ergmm.par.list, 17
 ergmm.prior, 19
 latentnet-package, 2
 mcmc.diagnostics.ergmm, 21
 merge.ergmm, 22
 plot.ergmm, 23
 predict.ergmm, 26
 simulate.ergmm, 27
 summary.ergmm, 29
 tribes, 31
*Topic hplot
 mcmc.diagnostics.ergmm, 21
 plot.ergmm, 23
*Topic list
 ergmm.par.list, 17
*Topic manip
 as.mcmc.list.ergmm, 3
 ergmm.par.list, 17
*Topic methods
 ergmm.par.list, 17
*Topic misc
 control.ergmm, 4
*Topic models
 ergmm-class, 10
 ergmm-families, 11
 ergmm-terms, 12
 ergmm.prior, 19
 gof.ergmm, 19
 latentnet-package, 2
 merge.ergmm, 22
 predict.ergmm, 26
 simulate.ergmm, 27
 summary.ergmm, 29
*Topic multivariate
 tribes, 31
*Topic nonlinear
 ergmm-terms, 12
 latentnet-package, 2
*Topic nonparametric
 ergmm-terms, 12
 latentnet-package, 2
*Topic package
 latentnet-package, 2
*Topic print
 summary.ergmm, 29
*Topic regression
 ergmm-class, 10
 ergmm-families, 11
 ergmm-terms, 12
 latentnet-package, 2
*Topic utilities
 ergmm.par.list, 17
 [.ergmm.par.list(ergmm.par.list), 17
 [[.ergmm.par.list(ergmm.par.list), 17
 $.ergmm.par.list(ergmm.par.list), 17
 33
egmm.par.list, 10, 17, 17
eqgmm.prior, 9, 19
egmm.terms (egmm-terms), 12
euclidean (egmm-terms), 12
euclidean2 (egmm-terms), 12
Ey.Bernoulli.logit (egmm-families), 11
Ey.binomial.logit (egmm-families), 11
Ey.fs (egmm-families), 11
Ey.normal.identity (egmm-families), 11
Ey.Poisson.log (egmm-families), 11
fam.par.check (egmm-families), 11
families.egmm, 2, 8
families.egmm (egmm-families), 11
family, 15
family (egmm-families), 11
gof, 19, 20
gof (gof.egmm), 19
gof.ergmm, 19, 20
InitErgmm.1 (egmm-terms), 12
InitErgmm.bilinear (egmm-terms), 12
InitErgmm.euclidean (egmm-terms), 12
InitErgmm.euclidean2 (egmm-terms), 12
InitErgmm.Intercept (egmm-terms), 12
InitErgmm.intercept (egmm-terms), 12
InitErgmm.latent (egmm-terms), 12
InitErgmm.latentcov (egmm-terms), 12
InitErgmm.loop.cov (egmm-terms), 12
InitErgmm.loop.factor (egmm-terms), 12
InitErgmm.loops (egmm-terms), 12
InitErgmm.receiver.cov (egmm-terms), 12
InitErgmm.receiver (egmm-terms), 12
InitErgmm.sender (egmm-terms), 12
InitErgmm.rsociality (egmm-terms), 12
InitErgmm.sender.cov (egmm-terms), 12
InitErgmm.sociality.cov (egmm-terms), 12
Intercept (egmm-terms), 12
intercept, 8
intercept (egmm-terms), 12
latent (ergmm), 8
latent.effect.bilinear (egmm-terms), 12
latent.effect.fs (egmm-terms), 12
latent.effect.IDs (egmm-terms), 12
latent.effect.invariances
(egmm-terms), 12
latent.effect.names (egmm-terms), 12
edgecov, 16
dges, 15
ergm, 15, 20
ergm.terms, 12
ergm.object (ergmm-terms), 10
ergmm.terms, 12
ergm.object, 22, 23, 25, 30
ergmm.terms, 12
as.ergmm.par.list (ergmm.par.list), 17
as.mcmc.ergmm.as.mcmc.list.ergmm, 3
as.mcmc.list.ergmm, 10, 11
autocorr, 22
bic.ergmm (summary.ergmm), 29
bilinear (ergmm-terms), 12
control.ergmm, 4, 9
davis, 6
del.iteration (ergmm.par.list), 17
dlpY.dispersion.fs (ergmm-families), 11
dlpY.dispersion.normal.identity
(ergmm-families), 11
dlpY.deta.Bernoulli.logit
(ergmm-families), 11
dlpY.deta.binomial.logit
(ergmm-families), 11
dlpY.deta.fs (ergmm-families), 11
dlpY.deta.normal.identity
(ergmm-families), 11
dlpY.deta.Poisson.log (ergmm-families), 11
dlpY.dZ.bilinear (ergmm-terms), 12
dlpY.dZ.fs (ergmm-terms), 12
dlpY.dZ.negative.Euclidean
(ergmm-terms), 12
dlpY.dZ.negative.Euclidean2
(ergmm-terms), 12
edgecov, 16
dges, 15
ergm, 15, 20
ergm.terms, 12
ergm.object, 22, 23, 25, 30
ERGMM fit object, 9
ergmm-class, 10
ergmm-terms, 12
ergmm.terms, 12
ergmm.control (control.ergmm), 4
ergmm.drawpie, 16
ergmm.families, 11
ergmm.object, 11
latent.\,effect.\,negative.\,Euclidean
\hspace{1cm} (ergmm-terms), 12
latent.\,effect.\,negative.\,Euclidean2
\hspace{1cm} (ergmm-terms), 12
latentcluster \hspace{0.2cm} (ergmm), 8
latentcov \hspace{0.2cm} (ergmm-terms), 12
lattentnet, 12
lattentnet (lattentnet-package), 2
lattentnet-package, 2
length.\,ergmm.\,par.\,list (ergmm.par.list), 17
lm, 8, 15
loopcov \hspace{0.2cm} (ergmm-terms), 12
loopfactor \hspace{0.2cm} (ergmm-terms), 12
lpY.\,Bernoulli.\,logit \hspace{0.2cm} (ergmm-families), 11
lpY.\,binomial.\,logit \hspace{0.2cm} (ergmm-families), 11
lpY.\,fs \hspace{0.2cm} (ergmm-terms), 11
lpY.\,normal.\,identity \hspace{0.2cm} (ergmm-families), 11
lpY.\,Poisson.\,log \hspace{0.2cm} (ergmm-families), 11
lpYc.\,Bernoulli.\,logit \hspace{0.2cm} (ergmm-families), 11
lpYc.\,binomial.\,logit \hspace{0.2cm} (ergmm-families), 11
lpYc.\,fs \hspace{0.2cm} (ergmm-terms), 11
lpYc.\,normal.\,identity \hspace{0.2cm} (ergmm-families), 11
lpYc.\,Poisson.\,log \hspace{0.2cm} (ergmm-families), 11
mcmc.diagnostics
\hspace{1cm} (mcmc.diagnostics.\,ergmm), 21
mcmc.diagnostics.\,ergmm, 4, 21
mcmc.list, 3, 4
merge, 22
merge.\,ergmm, 22
network, 28, 31
nodecov, 16
nodefactor, 16
nodeicov, 16
nodeifactor, 16
nodeocov, 16
nodeofactor, 16
par, 25
plot, 25
plot.\,ergmm, 2, 10, 11, 16, 23, 23
plot.\,gofobject, 20
plot.\,mcmc.\,list, 22
plot.\,network, 24, 25
plot3d.\,ergmm (plot.\,ergmm), 23
predict.\,ergmm, 10, 11, 26
print.\,ergmm (ergmm-class), 10
print.\,network, 28
print.\,summary.\,ergmm (summary.\,ergmm), 29
pY.\,Bernoulli.\,logit \hspace{0.2cm} (ergmm-families), 11
pY.\,binomial.\,logit \hspace{0.2cm} (ergmm-families), 11
pY.\,fs \hspace{0.2cm} (ergmm-terms), 11
pY.\,normal.\,identity \hspace{0.2cm} (ergmm-families), 11
pY.\,Poisson.\,log \hspace{0.2cm} (ergmm-families), 11
raftery.diag, 22
receivercov \hspace{0.2cm} (ergmm-terms), 12
receiver \hspace{0.2cm} (ergmm-terms), 12
rsender \hspace{0.2cm} (ergmm-terms), 12
rms.\,Bernoulli.\,logit \hspace{0.2cm} (ergmm-families), 11
rms.\,binomial.\,logit \hspace{0.2cm} (ergmm-families), 11
rms.\,fs \hspace{0.2cm} (ergmm-terms), 11
rms.\,normal.\,identity \hspace{0.2cm} (ergmm-families), 11
rms.\,Poisson.\,log \hspace{0.2cm} (ergmm-families), 11
rsociality \hspace{0.2cm} (ergmm-terms), 12
sendercov \hspace{0.2cm} (ergmm-terms), 12
show.\,ergmm \hspace{0.2cm} (ergmm-class), 10
simulate (simulate.\,ergmm), 27
simulate.\,ergmm, 20, 27
snowFT, 5
socialitycov \hspace{0.2cm} (ergmm-terms), 12
summary, 2
summary.\,ergmm, 10, 11, 29, 30
terms.\,ergmm (ergmm-terms), 12
terms.\,ergmm, 2, 3, 8, 9, 18, 19
terms.\,ergmm \hspace{0.2cm} (ergmm-terms), 12
tribes, 31
unstack.\,ergmm.\,par.\,list
\hspace{1cm} (ergmm.par.list), 17