Package ‘hotspots’

February 20, 2015

Type Package
Title Hot spots
Version 1.0.2
Date 2010-10-10
Author Anthony Darrouzet-Nardi
Maintainer Anthony Darrouzet-Nardi <anthony@darrouzet-nardi.net>
Description Calculates a hot spot cutoff and associated analyses for statistical populations
Depends lattice, ineq
License GPL-2
LazyLoad yes
Repository CRAN
Date/Publication 2012-10-29 08:58:58
NeedsCompilation no

R topics documented:

 disprop ... 2
 hotspots ... 3
 Lchs .. 5
 plot.hotspots ... 6
 summary.hotspots ... 7

Index 9
disprop

Disproportionality

Description

Calculates the magnitude of disproportionality for values within a dataset.

Usage

\texttt{disprop(z)}

Arguments

\texttt{z} \hspace{1em} \"hotspots\" object

Details

Calculates the magnitude of disproportionality for each value within the data by dividing the difference between each value and the median by the difference between the hot spot cutoff, (Ch, as calculated by the function \texttt{hotspots}), and the median:

\[
\text{disproportionality} = \frac{(x - \text{med}(x))}{(Ch - \text{med}(x))}
\]

Using this equation, all hot spots have a magnitude of disproportionality of > 1. Increasingly skewed distributions (for example, lognormal distributions with higher standard deviation) will have higher magnitudes of disproportionality for some of their values.

Value

A list containing the objects \texttt{positive}, \texttt{negative}, or both, depending on the which tails were calculated in the \texttt{hotspots} object. These objects are numeric vectors of the magnitudes of disproportionality. NA values are preserved.

Author(s)

Anthony Darrouzet-Nardi

See Also

\texttt{hotspots}

Examples

\begin{verbatim}
rln30 <- sort(c(rlnorm(15),rlnorm(15)*-1,NA), na.last = TRUE)
rln30
disprop(hotspots(rln30, tail = "both"))

#higher levels of disproportionality
rln30sd2 <- sort(c(rlnorm(15,sd = 3),rlnorm(15,sd = 3)*-1,NA), na.last = TRUE)
rln30sd2
disprop(hotspots(rln30sd2, tail = "both"))
\end{verbatim}
Description

Calculates a hot spot or outlier cutoff for a statistical population based on deviance from the normal or \(t \) distribution. In the case of the hot spot cutoff, the relative magnitude of the values is also taken into account to determine if values are disproportionately large relative to other values. Thus, a value that is a statistical outlier may not always be a hot spot if other values are similarly large.

Usage

```r
hotspots(x, p = 0.99, tail = "positive", distribution = "t", var.est = "mad")
```

```r
outliers(x, p = 0.99, tail = "positive", distribution = "t", var.est = "mad", center.est = "mean")
```

Arguments

- `x`: a numeric vector
- `p`: probability level of chosen distribution used for calculation of cutoff (between 0 and 1)
- `tail`: determines whether cutoffs are calculated for positive numbers within `x`, negative numbers, or both. Defaults to "positive" but can also be "negative" or "both".
- `distribution`: statistical distribution used to calculate the hot spot or outlier cutoff. Defaults to "t" but can also be "normal". Other distributions could be implemented through simple modifications to the source code.
- `var.est`: character vector indicating the function to be used to estimate the level of variation within the data. Defaults to the robust measure "mad". Non-robust measures such as "sd" may also be used, but result in greater variation in cutoff location.
- `center.est`: character vector indicating the function to be used to center the data for identification of outliers. Defaults to "mean".

Details

This function first scales the data by dividing them by a robust version of the root mean square. The robust root mean square (rrms) is calculated as:

\[rrms = \sqrt{\text{med}(x)^2 + \text{var.est}(x)^2} \]

where `var.est` is the user-specified function for estimating the level of variation within the data. This scaling of the data allows for the comparison of scaled values with a statistical distribution, which in turn allows discrimination between outliers that do not substantially influence the data from those that do. For the outlier function, the data are scaled after centering the data using the user-specified center.est function, which defaults to the mean. The hotspot or outlier cutoff (for positive values, negative values, or both) is then calculated as:

\[\text{cutoff} = \left(\text{med}(x/\text{rrms}) + F^{-1}(p) \right) \times \text{rrms} \]
where F is a cumulative distribution function for the t or normal distribution (its inverse F^{-1} being a quantile function; e.g., qt), and p is a user-defined parameter indicating the probability of F^{-1} beyond which we wish to define the cutoff.

Value

Returns an object of class "hotspots". The functions `summary` and `plot`, can be used to examine the properties of the cutoff. The function `disprop` can be used to calculate the level of disproportionality for each value in the data. An object of class "hotspots" is a list containing some or all of the following components:

- **x**: numeric input vector
- **data**: vector with missing values (NA) removed
- **distribution**: statistical distribution used to calculate the hot spot or outlier cutoff.
- **var.est**: function used to estimate the level of variation within the data
- **p**: probability level of chosen distribution used for calculation of cutoff
- **tail**: tail(s) of data for which cutoffs were calculated
- **dataset_name**: character vector with name of input data
- **rrms**: robust root mean square
- **positive.cut**: calculated hot spot or outlier cutoff for positive values
- **negative.cut**: calculated hot spot or outlier cutoff for negative values
- **center.est**: function to be used to center the data for identification of outliers (only for `outliers` function)

Author(s)

Anthony Darrouzet-Nardi

See Also

`summary.hotspots`, `plot.hotspots`, `disprop`

Examples

```r
# basic operation on lognormal data
rln100 <- hotspots(rlnorm(100))
summary(rln100)
plot(rln100)

# greater skew in data
rln100sd2 <- hotspots(rlnorm(100, sd=2))
print(summary(rln100sd2), top = 5)
plot(rln100sd2)

# both tails on normally distributed data
n100 <- hotspots(rnorm(100), tail = "both")
summary(n100)
plot(n100)
```
Lchs

both tails on skewed data
rln100pn <- hotspots(c(rlnorm(50), rlnorm(50)*-1), tail = "both")
summary(rln100pn)
plot(rln100pn)

importance of disproportionality on normally distributed data
contrast with n100
n100p3 <- hotspots(n100$x + 3, tail = "both")
summary(n100p3)
plot(n100p3)

importance of disproportionality on skewed data
contrast with rln100
rln100p10 <- hotspots(rlnorm(100) + 10)
summary(rln100p10)
plot(rln100p10)

outliers function ignores disproportionality
rln100p10o <- outliers(rlnorm(100) + 10)
summary(rln100p10o)
plot(rln100p10o)

some alternative parameters
rln100a <- hotspots(rlnorm(100), p = 0.9, distribution = "normal", var.est = "sd")
summary(rln100a)
plot(rln100a)

Lchs

Lorenz curve with hot spot cutoff

Description
Plot a Lorenz curve with a hot spot cutoff on it.

Usage
Lchs(x, ...)

Arguments
x "hotspots" object
... further plotting parameters to pass to plot.Lc

Details
Uses the function plot.Lc from the ineq package to plot a Lorenz curve based on the data in a hotspots object. The location of the hot spot cutoff on the Lorenz curve is then drawn as a filled black circle.
Author(s)

Anthony Darrouzet-Nardi

See Also

hotspots, lc, plot.Lc

Examples

lchs(hotspots(rlnorm(100)))

plot.hotspots Plotting hot spot and outlier cutoffs

Description

plot method for class "hotspots".

Usage

S3 method for "hotspots" objects
S3 method for class 'hotspots'
plot(x, pch = par("pch"), ...)

Arguments

x "hotspots" object
pch plotting character. See par
... further plotting parameters to pass to densityplot

Details

Uses the function densityplot from the lattice package to show the distribution of the data and the position of the positive and/or negative hot spot or outlier cutoffs.

Value

An object of class "trellis".

Author(s)

Anthony Darrouzet-Nardi

See Also

hotspots, summary.hotspots, densityplot
Examples

```r
# both tails on skewed data
rln100pn <- hotspots(c(rlnorm(50), rlnorm(50)*-1), tail = "both")
plot(rln100pn)

# modify graphical parameters
plot(rln100pn, pch = 16, cex = 1.5)
```

summary.hotspots
Summarizing hot spot and outlier cutoffs

Description

summary method for class "hotspots".

Usage

```r
## S3 method for "hotspots" objects
## S3 method for class 'hotspots'
summary(object, ...)

## S3 method for "summary.hotspots" objects
## S3 method for class 'summary.hotspots'
print(x, digits = max(3,getOption("digits") - 3), p_round = 1, top = 0, ...)
```

Arguments

- **object**
 "hotspots" object
- **x**
 "summary.hotspots" object
- **digits**
 the number of significant digits to use when printing
- **p_round**
 the number of decimal places to print for percentages when printing
- **top**
 the number of the most disproportionate (highest or lowest) data values to print with their percent contributions to the total
- **...**
 further arguments passed to or from other methods

Details

The importance of hot spots within the data is evaluated by reporting the number of hot spots, the percentage of values that are hot spots, and the percent of the sum of values attributable to hot spots. The percent of the sum of values is likely only relevant if the data are either all positive or all negative. A warning is given if they are not.
summary.hotspots

Value

A summary.hotspots object is a list containing all of the objects in a `hotspots` object as well as the following:

- `num_phs`: number of positive hot spots or outliers in data
- `percent_phs`: percent of values identified as positive hot spots or outliers
- `percent_phs_sum`: percent of the sum of the values attributable to positive hot spots or outliers
- `num_nhs`: number of negative hot spots or outliers in data
- `percent_nhs`: percent of values identified as negative hot spots or outliers
- `percent_nhs_sum`: percent of the sum of the values attributable to negative hot spots or outliers
- `m`: A list of summary statistics pertaining to the data (mean, median, min, max, scale (determined by the argument `varNest` in the `hotspots` function), and coefficient of variation (scale/median))

- `disprop`: vector of levels of disproportionality as calculated by `disprop`

Author(s)

Anthony Darrouzet-Nardi

See Also

`hotspots`, `plot.hotspots`, `disprop`

Examples

```r
rln100.sum <- summary(hotspots(rlnorm(101), tail = "both"))
rln100.sum
print(rln100.sum, top = 10, p_round = 0)
```
Index

densityplot, 6
disprop, 2, 4, 8

hotspots, 2, 3, 6, 8
hotspots-package (hotspots), 3

Lc, 6
Lchs, 5

outliers (hotspots), 3

par, 6
plot.hotspots, 4, 6, 8
plot.Lc, 5, 6
print.hotspots (hotspots), 3
print.summary.hotspots (summary.hotspots), 7

summary.hotspots, 4, 6, 7