Travis-CI Build Status MIT licensed CRAN_Status_Badge


Unlike many programming languages, R does not implement a native hash table class. The typical workaround is to use environments, taking advantage of the fact that these objects are, by default, internally hashed:

EE <- new.env(hash = TRUE)  # equivalent to new.env()

    envir = EE

# [1] -0.5604756

# [1] 0.07050839

# [1] -1.686693

In many situations, this is a fine solution - lookups are reasonably fast, and environments are highly flexible, allowing one to store virtually any type of R object (functions, lists, other environments, etc.). However, one of the major downsides to using envinronments as hash tables is the inability to work with vector arguments:

EE[[c("A", "B")]]
# Error in EE[[c("A", "B")]] : 
#   wrong arguments for subsetting an environment

EE[c("A", "B")]
# Error in EE[c("A", "B")] : 
#   object of type 'environment' is not subsettable

This is unfortunate, and somewhat surprising, considering most operations in R have vectorized semantics.



(HH <- hashmap(LETTERS, rnorm(26)))
## (character) => (numeric)  
##         [Z] => [-1.686693]
##         [Y] => [-0.625039]
##         [R] => [-1.966617]
##         [X] => [-0.728891]
##         [Q] => [+0.497850]
##         [P] => [+1.786913]
##       [...] => [...] 

HH[[c("A", "B")]]
# [1] -0.5604756 -0.2301775

It is important to note that unlike the environment-based solution, hashmap does NOT offer the flexibilty to store arbitrary types of objects. Any combination of the following atomic vector types is currently permitted:


What hashmap may lack in terms of flexibility it makes up for in two important areas: performance and ease-of-use. Let’s begin with the latter by looking at some basic examples.



The following is a simple test comparing the performance of an environment object against hashmap for

  1. Construction of the hash table
  2. Vectorized key lookup

An overview of results in presented here, but the full code to reproduce the test is in assets/benchmark.R. All of the examples use a one million element character vector for keys, and a one million element numeric vector for values.

Hash table construction was rather slow for the environment, despite my best moderate efforts to devise a fast solution, so expressions were only evaluated 25 times:

    "Hash" = hashmap(Keys, Values),
    "Env" = env_hash(Keys, Values),
    times = 25L
# Unit: milliseconds
#  expr        min        lq      mean    median       uq       max neval cld
#  Hash   946.3524  1287.771  1784.404  1639.788  2243.93  3315.194    25   a 
#   Env 11724.2705 13218.521 14071.874 13685.929 15178.27 16516.216    25   b

Next, a lookup of all 1000 keys:

E <- env_hash(Keys, Values)
H <- hashmap(Keys, Values)

all.equal(env_find(Lookup, E), H[[Lookup]])
# [1] TRUE

    "Hash" = H[[Lookup]],
    "Env" = env_find(Lookup, E), 
    times = 500L
# Unit: microseconds
#  expr       min       lq       mean     median         uq       max neval cld
#  Hash   314.182   738.98   804.5154   799.7065   858.3895  3013.285   500   a 
#   Env 12291.671 12651.12 13020.3816 12740.1735 12919.7355 67220.784   500   b

And finally, a comparison of key-lookups for vectors of various sizes, plotted below on the linear and logarithmic scales, where data points represent median evaluation time of 200 runs for the given expression:

The benchmark was conducted on a laptop running Ubuntu 14.04, with the following specs,

$ lscpu && printf "\n\n" && free -h
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                4
On-line CPU(s) list:   0-3
Thread(s) per core:    2
Core(s) per socket:    2
Socket(s):             1
NUMA node(s):          1
Vendor ID:             GenuineIntel
CPU family:            6
Model:                 69
Stepping:              1
CPU MHz:               759.000
BogoMIPS:              4589.34
Virtualization:        VT-x
L1d cache:             32K
L1i cache:             32K
L2 cache:              256K
L3 cache:              3072K
NUMA node0 CPU(s):     0-3

             total       used       free     shared    buffers     cached
Mem:          7.7G       5.6G       2.1G       333M       499M       2.5G
-/+ buffers/cache:       2.6G       5.1G
Swap:           0B         0B         0B

in the following R session:

R version 3.2.4 Revised (2016-03-16 r70336)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.4 LTS

 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] data.table_1.9.6   hashmap_0.0.0.9000 ggvis_0.4.2       

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.4.1          rstudioapi_0.3.1       knitr_1.11             magrittr_1.5          
 [5] munsell_0.4.2          colorspace_1.2-6       xtable_1.8-2           R6_2.1.1              
 [9] plyr_1.8.3             dplyr_0.4.3            tools_3.2.4            parallel_3.2.4        
[13] grid_3.2.4             gtable_0.1.2           DBI_0.3.1              htmltools_0.3.5       
[17] yaml_2.1.13            lazyeval_0.1.10        assertthat_0.1         digest_0.6.8          
[21] shiny_0.13.2           ggplot2_2.0.0          microbenchmark_1.4-2.1 codetools_0.2-14      
[25] mime_0.4               rmarkdown_0.8.1        scales_0.3.0           jsonlite_0.9.17       
[29] httpuv_1.3.3           chron_2.3-47 


The stable release of hashmap can be installed from CRAN:


The current development version can be installed from GitHub with devtools:

if (!"devtools" %in% installed.packages()[,1]) {