Package ‘ghyp’

August 17, 2016

Type Package

Version 1.5.7

Date 2016-08-17

Title A Package on Generalized Hyperbolic Distribution and Its Special Cases

Author David Luethi, Wolfgang Breymann

Maintainer Marc Weibel <marc.weibel@zhaw.ch>

LazyData no

Depends R(>= 2.7), methods, numDeriv, graphics, stats, gplots

Description Detailed functionality for working with the univariate and multivariate Generalized Hyperbolic distribution and its special cases (Hyperbolic (hyp), Normal Inverse Gaussian (NIG), Variance Gamma (VG), skewed Student-t and Gaussian distribution). Especially, it contains fitting procedures, an AIC-based model selection routine, and functions for the computation of density, quantile, probability, random variates, expected shortfall and some portfolio optimization and plotting routines as well as the likelihood ratio test. In addition, it contains the Generalized Inverse Gaussian distribution.

License GPL (>= 2)

Encoding latin1

Repository CRAN

Date/Publication 2016-08-17 11:01:12

NeedsCompilation yes

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ghyp-package</td>
<td>2</td>
</tr>
<tr>
<td>coef-method</td>
<td>6</td>
</tr>
<tr>
<td>fit.ghypmv</td>
<td>7</td>
</tr>
</tbody>
</table>
A package on the generalized hyperbolic distribution and its special cases

Description

This package provides detailed functionality for working with the univariate and multivariate Generalized Hyperbolic distribution and its special cases (Hyperbolic (hyp), Normal Inverse Gaussian (NIG), Variance Gamma (VG), skewed Student-t and Gaussian distribution). Especially, it contains fitting procedures, an AIC-based model selection routine, and functions for the computation of density, quantile, probability, random variates, expected shortfall and some portfolio optimization and plotting routines as well as the likelihood ratio test. In addition, it contains the Generalized Inverse Gaussian distribution.

Details

Package: ghyp
Type: Package
Version: 1.5.6
Date: 2013-02-04
License: GPL (GNU Public Licence), Version 2 or later
Initialize:

- **ghyp**: Initialize a generalized hyperbolic distribution.
- **hyp**: Initialize a hyperbolic distribution.
- **NIG**: Initialize a normal inverse gaussian distribution.
- **VG**: Initialize a variance gamma distribution.
- **student.t**: Initialize a Student-t distribution.
- **gauss**: Initialize a Gaussian distribution.

Density, distribution function, quantile function and random generation:

- **dghyp**: Density of a generalized hyperbolic distribution.
- **pghyp**: Distribution function of a generalized hyperbolic distribution.
- **qghyp**: Quantile of a univariate generalized hyperbolic distribution.
- **rghyp**: Random generation of a generalized hyperbolic distribution.

Fit to data:

- **fit.ghypuv**: Fit a generalized hyperbolic distribution to univariate data.
- **fit.hypuv**: Fit a hyperbolic distribution to univariate data.
- **fit.NIGuv**: Fit a normal inverse gaussian distribution to univariate data.
- **fit.VGuv**: Fit a variance gamma distribution to univariate data.
- **fit.tuv**: Fit a skewed Student-t distribution to univariate data.
- **fit.gaussuv**: Fit a Gaussian distribution to univariate data.
- **fit.ghypmv**: Fit a generalized hyperbolic distribution to multivariate data.
- **fit.hypmv**: Fit a hyperbolic distribution to multivariate data.
- **fit.NIGmv**: Fit a normal inverse gaussian distribution to multivariate data.
- **fit.VGmv**: Fit a variance gamma distribution to multivariate data.
- **fit.tmv**: Fit a skewed Student-t distribution to multivariate data.
- **fit.gaussmv**: Fit a Gaussian distribution to multivariate data.
- **stepAIC.ghyp**: Perform a model selection based on the AIC.

Risk, performance and portfolio optimization:

- **ESghyp**: Expected shortfall of a univariate generalized hyperbolic distribution.
- **ghyp.omega**: Performance measure Omega based on a univariate ghyp distribution.
- **portfolio.optimize**: Calculate optimal portfolios with respect to alternative risk measures.

Utilities:

- **mean**: Returns the expected value.
- **vcov**: Returns the variance(-covariance).
- **ghyp.skewness**: Skewness of a univariate ghyp distribution.
- **ghyp.kurtosis**: Kurtosis of a univariate ghyp distribution.
logLik Returns Log-Likelihood of fitted ghyp objects.
AIC Returns the Akaike's Information Criterion of fitted ghyp objects.
lik.ratio.test Performs a likelihood-ratio test on fitted ghyp distributions.
[] Extract certain dimensions of a multivariate ghyp distribution.
scale Scale ghyp distribution objects to zero expectation and/or unit variance.
transform Transform a multivariate generalized hyperbolic distribution.
ghyp.moment Moments of the univariate ghyp distribution.
coef Parameters of a generalized hyperbolic distribution.
ghyp.data Data of a (fitted) generalized hyperbolic distribution.
ghyp.fit.info Information about the fitting procedure, log-likelihood and AIC value.
ghyp.name Returns the name of the ghyp distribution or a subclass of it.
ghyp.dim Returns the dimension of a ghyp object.
summary Summary of a fitted generalized hyperbolic distribution.

Plot functions:

qqghyp Perform a quantile-quantile plot of a (fitted) univariate ghyp distribution.
hist Plot a histogram of a (fitted) univariate generalized hyperbolic distribution.
pairs Produce a matrix of scatterplots with quantile-quantile plots on the diagonal.
plot Plot the density of a univariate ghyp distribution.
lines Add the density of a univariate ghyp distribution to a graphics device.

Generalized inverse gaussian distribution:

dgig Density of a generalized inverse gaussian distribution
pgig Distribution function of a generalized inverse gaussian distribution
qgig Quantile of a generalized inverse gaussian distribution
ESgig Expected shortfall of a generalized inverse gaussian distribution
rgig Random generation of a generalized inverse gaussian distribution

Package vignette:
A document about generalized hyperbolic distributions can be found in the doc folder of this package or on http://cran.r-project.org/package=ghyp.

Existing solutions
There are packages like GeneralizedHyperbolic, HyperbolicDist, SkewHyperbolic, VarianceGamma and fBasics which cover the univariate generalized hyperbolic distribution and/or some of its special cases. However, the univariate case is contained in this package as well because we aim to provide a uniform interface to deal with generalized hyperbolic distribution. Recently an R port of the S-Plus library QRMLib was released. The package QRMLib contains fitting procedures for the multivariate NIG, hyp and skewed Student-t distribution but not for the generalized hyperbolic case. The package fMultivar implements a fitting routine for multivariate skewed Student-t distributions as well.
Object orientation

We follow an object-oriented programming approach in this package and introduce distribution objects. There are mainly four reasons for that:

- Unlike most distributions the GH distribution has quite a few parameters which have to fulfill some consistency requirements. Consistency checks can be performed uniquely when an object is initialized.
- Once initialized the common functions belonging to a distribution can be called conveniently by passing the distribution object. A repeated input of the parameters is avoided.
- Distributions returned from fitting procedures can be directly passed to, e.g., the density function since fitted distribution objects add information to the distribution object and consequently inherit from the class of the distribution object.
- Generic method dispatching can be used to provide a uniform interface to, e.g., plot the probability density of a specific distribution like `plot(distribution.object)`. Additionally, one can take advantage of generic programming since \texttt{R} provides virtual classes and some forms of polymorphism.

Acknowledgement

This package has been partially developed in the framework of the COST-P10 “Physics of Risk” project. Financial support by the Swiss State Secretariat for Education and Research (SBF) is gratefully acknowledged.

Author(s)

David Luethi, Wolfgang Breymann

Institute of Data Analyses and Process Design (http://www.idp.zhaw.ch)

Maintainer: Marc Weibel <marc.weibel@zhaw.ch>

References

Princeton Press, 2005

Intermediate probability: A computational approach by Marc Paolella
Wiley, 2007

http://www.macs.hw.ac.uk/~mcneil/book/QRMlib.html and \texttt{QRMlib}
 coef-method

Extract parameters of generalized hyperbolic distribution objects

Description

The function `coef` returns the parameters of a generalized hyperbolic distribution object as a list. The user can choose between the “chi/psi”, the “alpha.bar” and the “alpha/delta” parametrization. The function `coefficients` is a synonym for `coef`.

Usage

```r
## S4 method for signature 'ghyp'
coef(object, type = c("chi.psi", "alpha.bar", "alpha.delta"))
```

```r
## S4 method for signature 'ghyp'
coefficients(object, type = c("chi.psi", "alpha.bar", "alpha.delta"))
```

Arguments

- `object` An object inheriting from class `ghyp`.
- `type` According to `type` the parameters of either the “chi/psi”, the “alpha.bar” or the “alpha/delta” parametrization will be returned. If `type` is missing, the parameters belonging to the parametrization of the construction are returned.

Details

Internally, the “chi/psi” parametrization is used. However, fitting is only possible in the “alpha.bar” parametrization as it provides the most convenient parameter constraints.

Value

If `type` is “chi.psi” a list with components:

- `lambda` Shape parameter.
- `chi` Shape parameter.
- `psi` Shape parameters.
- `mu` Location parameter.
- `sigma` Dispersion parameter.
- `gamma` Skewness parameter.

If `type` is “alpha.bar” a list with components:

- `lambda` Shape parameter.
- `alpha.bar` Shape parameter.
- `mu` Location parameter.
- `sigma` Dispersion parameter.
If type is "alpha.delta" a list with components:

- `lambda` Shape parameter.
- `alpha` Shape parameter.
- `delta` Shape parameter.
- `mu` Location parameter.
- `Delta` Dispersion matrix with a determinant of 1 (only returned in the multivariate case).
- `beta` Shape and skewness parameter.

Note

A switch from either the “chi/psi” to the “alpha.bar” or from the “alpha/delta” to the “alpha.bar” parametrization is not yet possible.

Author(s)

David Luethi

See Also

`ghyp`, `fit.ghypuv`, `fit.ghypmv`, `ghyp.fit.info`, `transform`, `.[ghyp`

Examples

```r
ghyp.mv <- ghyp(lambda = 1, alpha.bar = 0.1, mu = rep(0,2), sigma = diag(rep(1,2)),
               gamma = rep(0,2), data = matrix(rt(1000, df = 4), ncol = 2))

## Get parameters
coeff(ghyp.mv, type = "alpha.bar")
coefficients(ghyp.mv, type = "chi.psi")

## Simple modification (do not modify slots directly e.g. object@mu <- 0:1)
param <- coeff(ghyp.mv, type = "alpha.bar")
param$mu <- 0:1
do.call("ghyp", param) # returns a new 'ghyp' object
```

Description

Perform a maximum likelihood estimation of the parameters of a multivariate generalized hyperbolic distribution by using an Expectation Maximization (EM) based algorithm.
Usage

```r
fit.ghypmv(data, lambda = 1, alpha.bar = 1, mu = NULL, sigma = NULL,
            gamma = NULL, opt.pars = c(lambda = T, alpha.bar = T, mu = T,
                                         sigma = T, gamma = !symmetric),
            symmetric = F, standardize = F, nit = 2000, reltol = 1e-8,
            abstol = reltol * 10, na.rm = F, silent = FALSE, save.data = T,
            trace = TRUE, ...)
```

```r
fit.hypmv(data, opt.pars = c(alpha.bar = T, mu = T, sigma = T, gamma = !symmetric),
           symmetric = F, ...)
```

```r
fit.NIGmv(data, opt.pars = c(alpha.bar = T, mu = T, sigma = T, gamma = !symmetric),
           symmetric = F, ...)
```

```r
fit.VGmv(data, lambda = 1,
          opt.pars = c(lambda = T, mu = T, sigma = T, gamma = !symmetric),
          symmetric = F, ...)
```

```r
fit.tmv(data, nu = 3.5,
         opt.pars = c(lambda = T, mu = T, sigma = T, gamma = !symmetric),
         symmetric = F, ...)
```

```r
fit.gaussmv(data, na.rm = T, save.data = T)
```

Arguments

data An object coercible to a matrix.

lambda Starting value for the shape parameter lambda.

alpha.bar Starting value for the shape parameter alpha.bar.

nu Starting value for the shape parameter nu (only used in case of a student-t distribution. It determines the degree of freedom and is defined as -2*lambda.)

mu Starting value for the location parameter mu.

sigma Starting value for the dispersion matrix sigma.

gamma Starting value for the skewness vector gamma.

opt.pars A named logical vector which states which parameters should be fitted.

symmetric If TRUE the skewness parameter gamma keeps zero.

standardize If TRUE the sample will be standardized before fitting. Afterwards, the parameters and log-likelihood et cetera will be back-transformed.

save.data If TRUE data will be stored within the mle.ghyp object (cf. ghyp.data).

trace If TRUE the evolution of the parameter values during the fitting procedure will be traced and stored (cf. ghyp.fit.info).

na.rm If TRUE missing values will be removed from data.
silent If TRUE no prompts will appear in the console.
nit Maximal number of iterations of the expectation maximization algorithm.
reltol Relative convergence tolerance.
abstol Absolute convergence tolerance.
... Arguments passed to `optim` and to `fit.ghypmv` when fitting special cases of the generalized hyperbolic distribution.

Details
This function uses a modified EM algorithm which is called Multi-Cycle Expectation Conditional Maximization (MCECM) algorithm. This algorithm is sketched in the vignette of this package which can be found in the doc folder. A more detailed description is provided by the book *Quantitative Risk Management, Concepts, Techniques and Tools* (see "References").

The general-purpose optimization routine `optim` is used to maximize the loglikelihood function of the univariate mixing distribution. The default method is that of Nelder and Mead which uses only function values. Parameters of `optim` can be passed via the ... argument of the fitting routines.

Value
An object of class `mle.ghyp`.

Note
The variance gamma distribution becomes singular when \(x - \mu = 0 \). This singularity is caught and the reduced density function is computed. Because the transition is not smooth in the numerical implementation this can rarely result in nonsensical fits.

Providing both arguments, opt.pars and symmetric respectively, can result in a conflict when opt.pars['gamma'] and symmetric are TRUE. In this case symmetric will dominate and opt.pars['gamma'] is set to FALSE.

Author(s)
Wolfgang Breymann, David Luethi

References

ghyp-package vignette in the doc folder or on http://cran.r-project.org/package=ghyp.

S-Plus and R library QRMlib (see http://www.macs.hw.ac.uk/~mcneil/book/QRMLib.html)

See Also
`fit.ghypuv`, `fit.hypuv`, `fit.NIGuv`, `fit.VGuv`, `fit.tuv` for univariate fitting routines. ghyp.fit.info for information regarding the fitting procedure.
Examples

data(smi.stocks)

fit.ghypmv(data = smi.stocks, opt.pars = c(lambda = FALSE), lambda = 2,
 control = list(rel.tol = 1e-5, abs.tol = 1e-5), reltol = 0.01)

fit.ghypuv
Fitting generalized hyperbolic distributions to univariate data

Description

This function performs a maximum likelihood parameter estimation for univariate generalized hyperbolic distributions.

Usage

fit.ghypuv(data, lambda = 1, alpha.bar = 0.5, mu = median(data),
 sigma = mad(data), gamma = 0,
 opt.pars = c(lambda = T, alpha.bar = T, mu = T, sigma = T, gamma = !symmetric),
 symmetric = F, standardize = F, save.data = T, na.rm = T, silent = FALSE, ...)

fit.hypuv(data,
 opt.pars = c(alpha.bar = T, mu = T, sigma = T, gamma = !symmetric),
 symmetric = F, ...)

fit.NIGuv(data,
 opt.pars = c(alpha.bar = T, mu = T, sigma = T, gamma = !symmetric),
 symmetric = F, ...)

fit.VGuv(data, lambda = 1,
 opt.pars = c(lambda = T, mu = T, sigma = T, gamma = !symmetric),
 symmetric = F, ...)

fit.tuv(data, nu = 3.5,
 opt.pars = c(nu = T, mu = T, sigma = T, gamma = !symmetric),
 symmetric = F, ...)

fit.gaussuv(data, na.rm = T, save.data = T)

Arguments

data An object coercible to a vector.
lambda Starting value for the shape parameter lambda.
alpha.bar Starting value for the shape parameter alpha.bar.
nu Starting value for the shape parameter nu (only used in case of a student-t distribution. It determines the degree of freedom and is defined as -2*lambda.)

mu Starting value for the location parameter mu.

sigma Starting value for the dispersion parameter sigma.

gamma Starting value for the skewness parameter gamma.

opt.pars A named logical vector which states which parameters should be fitted.

symmetric If TRUE the skewness parameter gamma keeps zero.

standardize If TRUE the sample will be standardized before fitting. Afterwards, the parameters and log-likelihood et cetera will be back-transformed.

save.data If TRUE data will be stored within the mle.ghyp object.

na.rm If TRUE missing values will be removed from data.

silent If TRUE no prompts will appear in the console.

... Arguments passed to optim and to fit.ghypuv when fitting special cases of the generalized hyperbolic distribution.

Details

The general-purpose optimization routine optim is used to maximize the loglikelihood function. The default method is that of Nelder and Mead which uses only function values. Parameters of optim can be passed via the ...argument of the fitting routines.

Value

An object of class mle.ghyp.

Note

The variance gamma distribution becomes singular when \(x - \mu = 0 \). This singularity is caught and the reduced density function is computed. Because the transition is not smooth in the numerical implementation this can rarely result in nonsensical fits.

Providing both arguments, opt.pars and symmetric respectively, can result in a conflict when opt.pars[‘gamma’] and symmetric are TRUE. In this case symmetric will dominate and opt.pars[‘gamma’] is set to FALSE.

Author(s)

Wolfgang Breymann, David Luethi

References

ghyp-package vignette in the doc folder or on http://cran.r-project.org/package=ghyp.

See Also

fit.ghypmv, fit.hypmv, fit.NIGmv, fit.VGmv, fit.tmv for multivariate fitting routines. ghyp.fit.info for information regarding the fitting procedure.
ghyp-constructors

Create generalized hyperbolic distribution objects

Examples

data(smi.stocks)

nig.fit <- fit.NIGuv(smi.stocks[, "SMI"], opt.pars = c(alpha.bar = FALSE),
 alpha.bar = 1, control = list(abstol = 1e-8))

summary(nig.fit)

hist(nig.fit)

Description

Constructor functions for univariate and multivariate generalized hyperbolic distribution objects and
their special cases in one of the parametrizations “chi/psi”, “alpha.bar” and “alpha/delta”.

Usage

ghyp(lambda = 0.5, chi = 0.5, psi = 2, mu = 0, sigma = diag(rep(1, length(mu))),
 gamma = rep(0, length(mu)), alpha.bar = NULL, data = NULL)

ghyp.ad(lambda = 0.5, alpha = 1.5, delta = 1, beta = rep(0, length(mu)),
 mu = 0, Delta = diag(rep(1, length(mu))), data = NULL)

hyp(chi = 0.5, psi = 2, mu = 0, sigma = diag(rep(1, length(mu))),
 gamma = rep(0, length(mu)), alpha.bar = NULL, data = NULL)

hyp.ad(alpha = 1.5, delta = 1, beta = rep(0, length(mu)), mu = 0,
 Delta = diag(rep(1, length(mu))), data = NULL)

NIG(chi = 2, psi = 2, mu = 0, sigma = diag(rep(1, length(mu))),
 gamma = rep(0, length(mu)), alpha.bar = NULL, data = NULL)

NIG.ad(alpha = 1.5, delta = 1, beta = rep(0, length(mu)), mu = 0,
 Delta = diag(rep(1, length(mu))), data = NULL)

student.t(nu = 3.5, chi = nu - 2, mu = 0, sigma = diag(rep(1, length(mu))),
 gamma = rep(0, length(mu)), data = NULL)

student.t.ad(lambda = -2, delta = 1, beta = rep(0, length(mu)), mu = 0,
 Delta = diag(rep(1, length(mu))), data = NULL)
VG(lambda = 1, psi = 2*lambda, mu = 0, sigma = diag(rep(1, length(mu))),
 gamma = rep(0, length(mu)), data = NULL)

VG.ad(lambda = 2, alpha = 1.5, beta = rep(0, length(mu)), mu = 0,
 Delta = diag(rep(1, length(mu))), data = NULL)

gauss(mu = 0, sigma = diag(rep(1, length(mu))), data = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lambda</td>
<td>Shape parameter. Common for all parametrizations.</td>
</tr>
<tr>
<td>nu</td>
<td>Shape parameter only used in case of a Student-t distribution in the “chi/psi” and “alpha.bar” parametrization. It determines the degree of freedom.</td>
</tr>
<tr>
<td>chi</td>
<td>Shape parameter of the “chi/psi” parametrization.</td>
</tr>
<tr>
<td>psi</td>
<td>Shape parameter of the “chi/psi” parametrization.</td>
</tr>
<tr>
<td>alpha</td>
<td>Shape parameter of the “alpha/delta” parametrization.</td>
</tr>
<tr>
<td>delta</td>
<td>Shape parameter of the “alpha/delta” parametrization.</td>
</tr>
<tr>
<td>alpha.bar</td>
<td>Shape parameter of the “alpha.bar” parametrization. Supplying “alpha.bar” makes the parameters “chi” and “psi” redundant.</td>
</tr>
<tr>
<td>mu</td>
<td>Location parameter. Either a scalar or a vector. Common for all parametrizations.</td>
</tr>
<tr>
<td>sigma</td>
<td>Dispersion parameter of the “chi/psi” parametrization. Either a scalar or a matrix.</td>
</tr>
<tr>
<td>Delta</td>
<td>Dispersion parameter. Must be a matrix with a determinant of 1. This parameter is only used in the multivariate case of the “alpha.beta” parametrization.</td>
</tr>
<tr>
<td>gamma</td>
<td>Skewness parameter of the “chi/psi” parametrization. Either a scalar or a vector.</td>
</tr>
<tr>
<td>beta</td>
<td>Skewness parameter of the “alpha/delta” parametrization. Either a scalar or a vector.</td>
</tr>
<tr>
<td>data</td>
<td>An object coercible to a vector (univariate case) or matrix (multivariate case).</td>
</tr>
</tbody>
</table>

Details

These functions serve as constructors for univariate and multivariate objects.

ghyp, hyp and NIG are constructor functions for both the “chi/psi” and the “alpha.bar” parametrization. Whenever alpha.bar is not NULL it is assumed that the “alpha.bar” parametrization is used and the parameters “chi” and “psi” become redundant.

Similarly, the variance gamma (VG) and the Student-t distribution share the same constructor function for both the chi/psi and alpha.bar parametrization. To initialize them in the alpha.bar parametrization simply omit the argument psi and chi, respectively. If psi or chi are submitted, the “chi/psi” parametrization will be used.
ghyp.ad, hyp.ad, NIG.ad, student.t.ad and VG.ad use the “alpha/delta” parametrization.

The following table gives the constructors for each combination of distribution and parametrization.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>“chi/psi”</th>
<th>“alpha.bar”</th>
<th>“alpha/delta”</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH</td>
<td>ghyp(...)</td>
<td>ghyp(..., alpha.bar=x)</td>
<td>ghyp.ad(...)</td>
</tr>
<tr>
<td>hyp</td>
<td>hyp(...)</td>
<td>hyp(..., alpha.bar=x)</td>
<td>hyp.ad(...)</td>
</tr>
<tr>
<td>NIG</td>
<td>nig(...)</td>
<td>nig(..., alpha.bar=x)</td>
<td>nig.ad(...)</td>
</tr>
<tr>
<td>Student-t</td>
<td>student.t(..., chi=x)</td>
<td>student.t(...)</td>
<td>student.t.ad(...)</td>
</tr>
<tr>
<td>VG</td>
<td>VG(..., psi=x)</td>
<td>VG(...)</td>
<td>VG.ad(...)</td>
</tr>
</tbody>
</table>

Have a look on the vignette of this package in the doc folder for further information regarding the parametrization and for the domains of variation of the parameters.

Value

An object of class ghyp.

Note

The Student-t parametrization obtained via the “alpha.bar” parametrization slightly differs from the common Student-t parametrization: The parameter sigma denotes the standard deviation in the univariate case and the variance in the multivariate case. Thus, set $\sigma = \sqrt{\nu/(\nu - 2)}$ in the univariate case to get the same results as with the standard R implementation of the Student-t distribution.

In case of non-finite variance, the “alpha.bar” parametrization does not work because sigma is defined to be the standard deviation. In this case the “chi/psi” parametrization can be used by submitting the parameter chi. To obtain equal results as the standard R implementation use student.t(nu = nu, chi = nu) (see Examples).

Have a look on the vignette of this package in the doc folder for further information.

Once an object of class ghyp is created the methods xghyp have to be used even when the distribution is a special case of the GH distribution. E.g. do not use dVG. Use dghyp and submit a variance gamma distribution created with VG().

Author(s)

David Luethi

References

ghyp-package vignette in the doc folder or on http://cran.r-project.org/package=ghyp
See Also

ghyp-class for a summary of generic methods assigned to ghyp objects, coef for switching between different parametrizations, d/p/q/r/ES/gyhp for density, distribution function et cetera, fit.ghypuv and fit.ghypmv for fitting routines.

Examples

alpha.bar parametrization of a univariate GH distribution
ghyp(\lambda=2, \alpha=0.1, \mu=0, \sigma=1, \gamma=0)

lambda/chi parametrization of a univariate GH distribution
ghyp(\lambda=2, \chi=1, \psi=0.5, \mu=0, \sigma=1, \gamma=0)

alpha/delta parametrization of a univariate GH distribution
ghyp.ad(\lambda=2, \alpha=0.5, \delta=1, \mu=0, \beta=0)

alpha.bar parametrization of a multivariate GH distribution
ghyp(\lambda=1, \alpha=0.1, \mu=2:3, \sigma=diag(1:2), \gamma=0:1)

lambda/chi parametrization of a multivariate GH distribution
ghyp(\lambda=1, \chi=1, \psi=0.5, \mu=2:3, \sigma=diag(1:2), \gamma=0:1)

alpha/delta parametrization of a multivariate GH distribution
ghyp.ad(\lambda=1, \alpha=2.5, \delta=1, \mu=2:3, \Delta=diag(c(1,1)), \beta=0:1)

alpha.bar parametrization of a univariate hyperbolic distribution
hyp(\alpha=0.3, \mu=1, \sigma=0.1, \gamma=0)

lambda/chi parametrization of a univariate hyperbolic distribution
hyp(\chi=1, \psi=2, \mu=1, \sigma=0.1, \gamma=0)

alpha/delta parametrization of a univariate hyperbolic distribution
hyp.ad(\alpha=0.5, \delta=1, \mu=0, \beta=0)

alpha.bar parametrization of a univariate NIG distribution
NIG(\alpha=0.3, \mu=1, \sigma=0.1, \gamma=0)

lambda/chi parametrization of a univariate NIG distribution
NIG(\chi=1, \psi=2, \mu=1, \sigma=0.1, \gamma=0)

alpha/delta parametrization of a univariate NIG distribution
NIG.ad(\alpha=0.5, \delta=1, \mu=0, \beta=0)

alpha.bar parametrization of a univariate VG distribution
VG(\lambda=2, \mu=1, \sigma=0.1, \gamma=0)

alpha/delta parametrization of a univariate VG distribution
VG.ad(\lambda=2, \alpha=0.5, \mu=0, \beta=0)

alpha.bar parametrization of a univariate t distribution
student.t(3, \mu=1, \sigma=0.1, \gamma=0)

alpha/delta parametrization of a univariate t distribution
student.t.ad(-2, \delta=1, \mu=0, \beta=1)

Obtain equal results as with the R-core parametrization
of the t distribution:
\nu < 4
standard.R.chi.psi <- student.t(3, \nu=\nu, \chi=\nu)
standard.R.alpha.bar <- student.t(3, \nu=\nu, \sigma=sqrt(\nu/\nu-2))

random.sample <- rnorm(3)
```r
dt(random.sample, nu)
dghyp(random.sample, standard.R.chi.psi)  # all implementations yield...
dghyp(random.sample, standard.R.alpha.bar)  # ...the same values

random.quantiles <- runif(4)
qt(random.quantiles, nu)
qughyp(random.quantiles, standard.R.chi.psi)  # all implementations yield...
qughyp(random.quantiles, standard.R.alpha.bar)  # ...the same values

## If nu <= 2 the "alpha.bar" parametrization does not exist, but the
## "chi/psi" parametrization. The case of a Cauchy distribution:
nu <- 1
standard.R.chi.psi <- student.t(nu = nu, chi = nu)
dt(random.sample, nu)
dghyp(random.sample, standard.R.chi.psi)  # both give the same result

pt(random.sample, nu)
pghyp(random.sample, standard.R.chi.psi)  # both give the same result
```

ghyp-distribution The Generalized Hyperbolic Distribution

Description

Density, distribution function, quantile function, expected-shortfall and random generation for the univariate and multivariate generalized hyperbolic distribution and its special cases.

Usage

```r
dghyp(x, object = ghyp(), logvalue = FALSE)
pghyp(q, object = ghyp(), n.sim = 10000, subdivisions = 200,
    rel.tol = .Machine$double.eps^0.5, abs.tol = rel.tol,
    lower.tail = TRUE)
qughyp(p, object = ghyp(), method = c("integration", "splines"),
    spline.points = 200, subdivisions = 200,
    root.tol = .Machine$double.eps^0.5,
    rel.tol = root.tol^1.5, abs.tol = rel.tol)

rghyp(n, object = ghyp())
```

Arguments

- `p` A vector of probabilities.
- `x` A vector, matrix or data.frame of quantiles.
A vector, matrix or data.frame of quantiles.

Number of observations.

An object inheriting from class `ghyp`.

If TRUE the logarithm of the density will be returned.

The number of simulations when computing `pghyp` of a multivariate generalized hyperbolic distribution.

The number of subdivisions passed to `integrate` when computing the distribution function `pghyp` of a univariate generalized hyperbolic distribution.

The relative accuracy requested from `integrate`.

The absolute accuracy requested from `integrate`.

If TRUE (default), probabilities are $P[X \leq x]$, otherwise, $P[X > x]$.

The method how quantiles are computed (see `Details`).

The number of support points when computing the quantiles with the method “splines” instead of “integration”.

The tolerance of `uniroot`.

Details

`qghyp` only works for univariate generalized hyperbolic distributions.

`pghyp` performs a numeric integration of the density in the univariate case. The multivariate cumulative distribution is computed by means of monte carlo simulation.

`qghyp` computes the quantiles either by using the “integration” method where the root of the distribution function is solved or via “splines” which interpolates the distribution function and solves it with `uniroot` afterwards. The “integration” method is recommended when only few quantiles are required. If more than approximately 20 quantiles are needed to be calculated the “splines” method becomes faster. The accuracy can be controlled with an adequate setting of the parameters `rel.tol`, `abs.tol`, `root.tol` and `spline.points`.

`rghyp` uses the random generator for generalized inverse Gaussian distributed random variates from the Rmetrics package `fBasics` (cf. `rgig`).

Value

`dghyp` gives the density,

`pghyp` gives the distribution function,

`qghyp` gives the quantile function,

`rghyp` generates random deviates.

Note

Objects generated with `hyp`, `NIG`, `VG` and `student.t` have to use `xghyp` as well. E.g. `dNIG(0, NIG())` does not work but `dghyp(0, NIG())`.
When the skewness becomes very large the functions using qghyp may fail. The functions qqghyp, pairs and portfolio.optimize are based on qghyp.

Author(s)

David Luethi

References

ghyp-package vignette in the doc folder or on http://cran.r-project.org/package=ghyp and references therein.

See Also

ghyp-class definition, ghyp constructors, fitting routines fit.ghypuv and fit.ghypmv, risk and performance measurement EShyp and ghyp.omega, transformation and subsetting of ghyp objects, integrate, spline.

Examples

```r
## Univariate generalized hyperbolic distribution
univariate.ghyp <- ghyp()

par(mfrow=c(5, 1))

quantiles <- seq(-4, 4, length = 500)
plot(quantiles, dghyp(quantiles, univariate.ghyp))
plot(quantiles, pghyp(quantiles, univariate.ghyp))

probabilities <- seq(1e-4, 1-1e-4, length = 500)
plot(probabilities, qghyp(probabilities, univariate.ghyp, method = "splines"))

hist(rghyp(n=10000,univariate.ghyp),nclass=100)

## Multivariate generalized hyperbolic distribution
multivariate.ghyp <- ghyp(sigma=var(matrix(rnorm(10),ncol=2)),mu=c(1,2),gamma=-c(2:1))

par(mfrow=c(2, 1))

quantiles <- outer(seq(-4, 4, length = 50), c(1, 1))
plot(quantiles[, 1], dghyp(quantiles, multivariate.ghyp))
plot(quantiles[, 1], pghyp(quantiles, multivariate.ghyp, n.sim = 1000))

rghyp(n = 10, multivariate.ghyp)
```
Get methods for objects inheriting from class ghyp

Description

These functions simply return data stored within generalized hyperbolic distribution objects, i.e. slots of the classes ghyp and mle.ghyp. ghyp.fit.info extracts information about the fitting procedure from objects of class mle.ghyp. ghyp.data returns the data slot of a ghyp object. ghyp.dim returns the dimension of a ghyp object. ghyp.name returns the name of the distribution of a ghyp object.

Usage

ghyp.fit.info(object)

ghyp.data(object)

ghyp.name(object, abbr = FALSE, skew.attr = TRUE)

ghyp.dim(object)

Arguments

object An object inheriting from class ghyp.
abbr If TRUE the abbreviation of the ghyp distribution will be returned.
skew.attr If TRUE an attribute will be added to the name of the ghyp distribution stating whether the distribution is symmetric or not.

Value

ghyp.fit.info returns list with components:

 logLikelihood The maximized log-likelihood value.
 aic The Akaike information criterion.
 fitted.params A boolean vector stating which parameters were fitted.
 converged A boolean whether optim converged or not.
 n.iter The number of iterations.
 error.code Error code from optim.
 error.message Error message from optim.
 parameter.variance Parameter variance (only for univariate fits).
 trace.pars Trace values of the parameters during the fitting procedure.

ghyp.data returns NULL if no data is stored within the object, a vector if it is an univariate generalized hyperbolic distribution and matrix if it is an multivariate generalized hyperbolic distribution.
ghyp.name returns the name of the ghyp distribution which can be the name of a special case. Depending on the arguments abbr and skew.attr one of the following is returned.

<table>
<thead>
<tr>
<th>abbr == FALSE & skew.attr == TRUE</th>
<th>abbr == TRUE & skew.attr == TRUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)symmetric Generalized Hyperbolic</td>
<td>(A)symmetric Normal Inverse Gaussian</td>
</tr>
<tr>
<td>(A)symmetric Hyperbolic</td>
<td>(A)symmetric Hyperbolic</td>
</tr>
<tr>
<td>(A)symmetric Normal Inverse Gaussian</td>
<td>(A)symmetric Variance Gamma</td>
</tr>
<tr>
<td>(A)symmetric Variance Gamma</td>
<td>(A)symmetric Student-t</td>
</tr>
<tr>
<td>Gaussian</td>
<td>Gaussian</td>
</tr>
<tr>
<td>abbr == FALSE & skew.attr == FALSE</td>
<td>abbr == TRUE & skew.attr == FALSE</td>
</tr>
<tr>
<td>Generalized Hyperbolic</td>
<td>Hypothetical Normal Inverse Gaussian</td>
</tr>
<tr>
<td>Hyperbolic</td>
<td>Variance Gamma</td>
</tr>
<tr>
<td>Normal Inverse Gaussian</td>
<td>Student-t</td>
</tr>
<tr>
<td>Variance Gamma</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Student-t</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Gaussian</td>
<td>Gaussian</td>
</tr>
</tbody>
</table>

ghyp.dim returns the dimension of a ghyp object.

Note
ghyp.fit.info requires an object of class mle.ghyp. In the univariate case the parameter variance is returned as well. The parameter variance is defined as the inverse of the negative hesse-matrix computed by optim. Note that this makes sense only in the case that the estimates are asymptotically normal distributed.

The class ghyp contains a data slot. Data can be stored either when an object is initialized or via the fitting routines and the argument save.data.

Author(s)
David Luethi

See Also
coef, mean, vcov, logLik, AIC for other accessor functions, fit.ghypmv, fit.ghypuv, ghyp for constructor functions, optim for possible error messages.

Examples
multivariate generalized hyperbolic distribution
ghyp.mv <- ghyp(lambda = 1, alpha.bar = 0.1, mu = rep(0, 2), sigma = diag(rep(1, 2)),
 gamma = rep(0, 2), data = matrix(rt(1000, df = 4), ncol = 2))

Get data
ghyp.data(ghyp.mv)
ghyp-mle.ghyp-classes

Classes ghyp and mle.ghyp

Description

The class “ghyp” basically contains the parameters of a generalized hyperbolic distribution. The class “mle.ghyp” inherits from the class “ghyp”. The class “mle.ghyp” adds some additional slots which contain information about the fitting procedure. Namely, these are the number of iterations (n.iter), the log likelihood value (llh), the Akaike Information Criterion (aic), a boolean vector (fitted.params) stating which parameters were fitted, a boolean converged whether the fitting procedure converged or not, an error.code which stores the status of a possible error and the corresponding error.message. In the univariate case the parameter variance is also stored in parameter.variance.

Objects from the Class

Objects should only be created by calls to the constructors ghyp, hyp, NIG, VG, student.t and gauss or by calls to the fitting routines like fit.ghypuv, fit.ghypmv, fit.hypuv, fit.hypmv etcetera.

Slots

Slots of class ghyp:

- **call**: The function-call of class call.
- **lambda**: Shape parameter of class numeric.
- **alpha.bar**: Shape parameter of class numeric.
- **chi**: Shape parameter of an alternative parametrization. Object of class numeric.
- **psi**: Shape parameter of an alternative parametrization. Object of class numeric.
- **mu**: Location parameter of class numeric.
- **sigma**: Dispersion parameter of class matrix.
- **gamma**: Skewness parameter of class numeric.
model: Model, i.e., (a)symmetric generalized hyperbolic distribution or (a)symmetric special case. Object of class character.

dimension: Dimension of the generalized hyperbolic distribution. Object of class numeric.

expected.value: The expected value of a generalized hyperbolic distribution. Object of class numeric.

variance: The variance of a generalized hyperbolic distribution of class matrix.

data: The data-slot is of class matrix. When an object of class ghypmv is instantiated the user can decide whether data should be stored within the object or not. This is the default and may be useful when fitting generalized hyperbolic distributions to data and perform further analysis afterwards.

parametrization: Parametrization of the generalized hyperbolic distribution of class character. These are currently either “chi.psi”, “alpha.bar” or “alpha.delta”.

Slots added by class mle.ghyp:

n.iter: The number of iterations of class numeric.

llh: The log likelihood value of class numeric.

converged: A boolean whether converged or not. Object of class logical.

error.code: An error code of class numeric.

error.message: An error message of class character.

fitted.params: A boolean vector stating which parameters were fitted of class logical.

aic: The value of the Akaike Information Criterion of class numeric.

parameter.variance: The parameter variance is the inverse of the fisher information matrix. This slot is filled only in the case of an univariate fit. This slot is of class matrix.

trace.pars: Contains the parameter value evolution during the fitting procedure. trace.pars of class list.

Extends

Class “mle.ghyp” extends class "ghyp", directly.

Methods

A “pairs” method (see pairs).
A “hist” method (see hist).
A “plot” method (see plot).
A “lines” method (see lines).
A “coef” method (see coef).
A “mean” method (see mean).
A “vcov” method (see vcov).
A “scale” method (see scale).
A “transform” method (see transform).
A “[.ghyp” method (see []).
A “logLik” method for objects of class “mle.ghyp” (see logLik).
An “AIC” method for objects of class “mle.ghyp” (see AIC).
A “summary” method for objects of class “mle.ghyp” (see summary).
Note

When showing special cases of the generalized hyperbolic distribution the corresponding fixed parameters are not printed.

Author(s)

David Luethi

See Also

optim for an interpretation of error.code, error.message and parameter.variance.
ghyp, hyp, NIG, VG, student.t and gauss for constructors of the class ghyp in the “alpha.bar” and “chi/psi” parametrization. xxx.ad for all the constructors in the “alpha/delta” parametrization.
fit.ghypuv, fit.ghypmv et cetera for the fitting routies and constructors of the class mle.ghyp.

Examples

data(smi.stocks)
multivariate.fit <- fit.ghypmv(data = smi.stocks,
opt.pars = c(lambda = FALSE, alpha.bar = FALSE),
lambda = 2)

summary(multivariate.fit)

vcov(multivariate.fit)
mean(multivariate.fit)
logLik(multivariate.fit)
AIC(multivariate.fit)
coef(multivariate.fit)

univariate.fit <- multivariate.fit[1]
hist(univariate.fit)

plot(univariate.fit)
lines(multivariate.fit[2])

ghyp-risk-performance Risk and Performance Measures

Description

Functions to compute the risk measure Expected Shortfall and the performance measure Omega based on univariate generalized hyperbolic distributions.

Usage

ESghyp(alpha, object = ghyp(), distr = c("return", "loss"), ...)

ghyp.omega(L, object = ghyp(), ...)
Arguments

- **alpha**
 - A vector of confidence levels.

- **L**
 - A vector of threshold levels.

- **object**
 - A univariate generalized hyperbolic distribution object inheriting from class `ghyp`.

- **distr**
 - Whether the ghyp-object specifies a return or a loss-distribution (see Details).

... Arguments passed from `esghyp` to `qghyp` and from `ghyp.omega integrate`.

Details

The parameter `distr` specifies whether the ghyp-object describes a return or a loss-distribution. In case of a return distribution the expected-shortfall on a confidence level \(\alpha \) is defined as

\[
ES_\alpha := E(X | X \leq F^{-1}_X(\alpha))
\]

while in case of a loss distribution it is defined on a confidence level \(\alpha \) as

\[
ES_\alpha := E(X | X > F^{-1}_X(\alpha)).
\]

Omega is defined as the ratio of a European call-option price divided by a put-option price with strike price \(L \) (see References): \(\Omega(L) := \frac{C(L)}{P(L)} \).

Value

- `ESghyp` gives the expected shortfall and
- `ghyp.omega` gives the performance measure Omega.

Author(s)

David Luethi

References

- *Omega as a Performance Measure* by Hossein Kazemi, Thomas Schneeweis and Raj Gupta
 - University of Massachusetts, 2003

See Also

- `ghyp-class` definition, `ghyp` constructors, univariate fitting routines, `fit.ghypuv`, `portfolio.optimize` for portfolio optimization with respect to alternative risk measures, `integrate`.

Examples

```r
data(smi.stocks)

## Fit a NIG model to Credit Suisse and Swiss Re log-returns
cs.fit <- fit.NIGuv(smi.stocks[, "CS"], silent = TRUE)
swiss.re.fit <- fit.NIGuv(smi.stocks[, "Swiss.Re"], silent = TRUE)

## Confidence levels for expected shortfalls
es.levels <- c(0.001, 0.01, 0.05, 0.1)
```
ghyp.moment

Compute moments of generalized hyperbolic distributions

Description

This function computes moments of arbitrary orders of the univariate generalized hyperbolic distribution. The expectation of \(f(X - c)^k \) is calculated. \(f \) can be either the absolute value or the identity. \(c \) can be either zero or \(E(X) \).

Usage

ghyp.moment(object, order = 3:4, absolute = FALSE, central = TRUE, ...)

Arguments

- **object**
 A univariate generalized hyperbolic object inheriting from class ghyp.
- **order**
 A vector containing the order of the moments.
- **absolute**
 Indicate whether the absolute value is taken or not. If absolute = TRUE then \(E(|X - c|^k) \) is computed. Otherwise \(E((X - c)^k) \). \(c \) depends on the argument central. absolute must be TRUE if order is not integer.
- **central**
 If TRUE the moment around the expected value \(E((X - E(X))^k) \) is computed. Otherwise \(E(X^k) \).
- ... Arguments passed to integrate.
Details

In general ghyp.moment is based on numerical integration. For the special cases of either a “ghyp”, “hyp” or “NIG” distribution analytic expressions (see References) will be taken if non-absolute and non-centered moments of integer order are requested.

Value

A vector containing the moments.

Author(s)

David Luethi

References

Moments of the Generalized Hyperbolic Distribution by David J. Scott, Diethelm Wuertz and Thanh Tam Tran
Working paper, 2008

See Also

mean, vcov, Egig

Examples

nig.uv <- NIG(alpha.bar = 0.1, mu = 1.1, sigma = 3, gamma = -2)

Moments of integer order
ghyp.moment(nig.uv, order = 1:6)

Moments of fractional order
ghyp.moment(nig.uv, order = 0.2 * 1:20, absolute = TRUE)
Usage

dgig(x, lambda = 1, chi = 1, psi = 1, logvalue = FALSE)

pgig(q, lambda = 1, chi = 1, psi = 1, ...)

qgig(p, lambda = 1, chi = 1, psi = 1, method = c("integration", "splines"),
 spline.points = 200, subdivisions = 200,
 root.tol = .Machine$double.eps^0.5,
 rel.tol = root.tol^1.5, abs.tol = rel.tol, ...)

rgig(n = 10, lambda = 1, chi = 1, psi = 1)

ESgig(alpha, lambda = 1, chi = 1, psi = 1, distr = c("return", "loss"), ...)

Egig(lambda, chi, psi, func = c("x", "logx", "1/x", "var"), check.pars = TRUE)

Arguments

x A vector of quantiles.
q A vector of quantiles.
p A vector of probabilities.
alpha A vector of confidence levels.
n Number of observations.
lambda A shape and scale and parameter.
chi, psi Shape and scale parameters. Must be positive.
logvalue If TRUE the logarithm of the density will be returned.
distr Whether the ghyp-object specifies a return or a loss-distribution (see Details).
subdivisions The number of subdivisions passed to integrate when computing the the dis-
 tribution function pgig.
rel.tol The relative accuracy requested from integrate.
abs.tol The absolute accuracy requested from integrate.
method Determines which method is used when calculating quantiles.
spline.points The number of support points when computing the quantiles with the method
 "splines" instead of "integration".
root.tol The tolerance of uniroot.
func The transformation function when computing the expected value. x is the ex-
 pected value (default), log x returns the expected value of the logarithm of x,
 1/x returns the expected value of the inverse of x and var returns the variance.
check.pars If TRUE the parameters are checked first.
... Arguments passed form ESgig to qgig.
Details

gig computes the quantiles either by using the “integration” method where the root of the distribution function is solved or via “splines” which interpolates the distribution function and solves it with `uniroot` afterwards. The “integration” method is recommended when few quantiles are required. If more than approximately 20 quantiles are needed to be calculated the “splines” method becomes faster. The accuracy can be controlled with an adequate setting of the parameters `rel.tol`, `abs.tol`, `root.tol` and `spline.points`.

`rgig` relies on the C function with the same name kindly provided by Ester Pantaleo and Robert B. Gramacy.

Egig with `func` = "log x" uses `grad` from the R package `numDeriv`. See the package vignette for details regarding the expectation of GIG random variables.

Value

dgig gives the density,
pgig gives the distribution function,
qgig gives the quantile function,
ESgig gives the expected shortfall,
rgig generates random deviates and
Egig gives the expected value of either x, 1/x, log(x) or the variance if func equals var.

Author(s)

David Luethi and Ester Pantaleo

References

See Also

`fit.ghypuv`, `fit.ghypmv`, `integrate`, `uniroot`, `spline`

Examples

dgig(1:40, lambda = 10, chi = 1, psi = 1)
pgig(1e-5, lambda = 10, chi = 1, psi = 1)

ESgig(c(0.19, 0.3), lambda = 10, chi = 1, psi = 1, distr = "loss")
ESgig(alpha=c(0.19, 0.3), lambda = 10, chi = 1, psi = 1, distr = "ret")

Egig(lambda = 10, chi = 1, psi = 1, func = "x")
Egig(lambda = 10, chi = 1, psi = 1, func = "var")
Egig(lambda = 10, chi = 1, psi = 1, func = "1/x")
Description
The function `hist` computes a histogram of the given data values and the univariate generalized hyperbolic distribution.

Usage
```r
## S4 method for signature 'ghyp'
hist(x, data = ghyp.data(x), gaussian = TRUE,
  log.hist = F, ylim = NULL, ghyp.col = 1, ghyp.lwd = 1,
  ghyp.lty = "solid", col = 1, nclass = 30, plot.legend = TRUE,
  location = if (log.hist) "bottom" else "topright", legend.cex = 1, ...)
```

Arguments
- **x**: Usually a fitted univariate generalized hyperbolic distribution of class `mle.ghyp`. Alternatively an object of class `ghyp` and a data vector.
- **data**: An object coercible to a vector.
- **gaussian**: If TRUE the probability density of the normal distribution is plotted as a reference.
- **log.hist**: If TRUE the logarithm of the histogramm is plotted.
- **ylim**: The “y” limits of the plot.
- **ghyp.col**: The color of the density of the generalized hyperbolic distribution.
- **ghyp.lwd**: The line width of the density of the generalized hyperbolic distribution.
- **ghyp.lty**: The line type of the density of the generalized hyperbolic distribution.
- **col**: The color of the histogramm.
- **nclass**: A single number giving the number of cells for the histogramm.
- **plot.legend**: If TRUE a legend is drawn.
- **location**: The location of the legend. See `legend` for possible values.
- **legend.cex**: The character expansion of the legend.
- **...**: Arguments passed to `plot` and `qghyp`.

Value
No value is returned.

Author(s)
David Luethi
See Also

`qqghyp, fit.ghypuv, hist, legend, plot, lines`.

Examples

```r
data(smi.stocks)
univariate.fit <- fit.ghypuv(data = smi.stocks[, "SMI"],
  opt.pars = c(mu = FALSE, sigma = FALSE),
  symmetric = TRUE)
hist(univariate.fit)
```

indices

Monthly returns of five indices

Description

Monthly returns of indices representing five asset/investment classes *Bonds, Stocks, Commodities, Emerging Markets* and *High Yield Bonds*.

Usage

```r
data(indices)
```

Format

- `hy.bond` JPMorgan High Yield Bond A (Yahoo symbol “OHYAX”).
- `emerging.mkt` Morgan Stanley Emerging Markets Fund Inc. (Yahoo symbol “MSF”).
- `commodity` Dow Jones-AIG Commodity Index (Yahoo symbol “DJI”).
- `bond` Barclays Global Investors Bond Index (Yahoo symbol “WFBIX”).
- `stock` Vanguard Total Stock Mkt Idx (Yahoo symbol “VTSMX”).

See Also

`smi.stocks`

Examples

```r
data(indices)
pairs(indices)
```
Description

This function performs a likelihood-ratio test on fitted generalized hyperbolic distribution objects of class mle.ghyp.

Usage

lik.ratio.test(x, x.subclass, conf.level = 0.95)

Arguments

- **x**: An object of class mle.ghyp.
- **x.subclass**: An object of class mle.ghyp whose parameters form a subset of those of **x**.
- **conf.level**: Confidence level of the test.

Details

The likelihood-ratio test can be used to check whether a special case of the generalized hyperbolic distribution is the “true” underlying distribution.

The likelihood-ratio is defined as

$$\Lambda = \frac{\sup\{L(\theta|X) : \theta \in \Theta_0\}}{\sup\{L(\theta|X) : \theta \in \Theta\}}.$$

Where L denotes the likelihood function with respect to the parameter θ and data X, and Θ_0 is a subset of the parameter space Θ. The null hypothesis $H0$ states that $\theta \in \Theta_0$. Under the null hypothesis and under certain regularity conditions it can be shown that $-2\log(\Lambda)$ is asymptotically chi-squared distributed with ν degrees of freedom. ν is the number of free parameters specified by Θ minus the number of free parameters specified by Θ_0.

The null hypothesis is rejected if $-2\log(\Lambda)$ exceeds the conf.level-quantile of the chi-squared distribution with ν degrees of freedom.

Value

A list with components:

- **statistic**: The value of the L-statistic.
- **p.value**: The p-value for the test.
- **df**: The degrees of freedom for the L-statistic.
- **H0**: A boolean stating whether the null hypothesis is TRUE or FALSE.

Author(s)

David Luethi
References

Linear Statistical Inference and Its Applications by C. R. Rao
Wiley, New York, 1973

See Also

`fit.ghypuv, logLik, AIC` and `stepAIC.ghyp`.

Examples

```r
data(smi.stocks)
sample <- smi.stocks[, "SMI"]
t.symmetric <- fit.tuv(sample, silent = TRUE, symmetric = TRUE)
t.asymmetric <- fit.tuv(sample, silent = TRUE)

# Test symmetric Student-t against asymmetric Student-t in case of SMI log-returns
lik.ratio.test(t.asymmetric, t.symmetric, conf.level = 0.95)
# -> keep the null hypothesis

set.seed(1000)
sample <- rghyp(1000, student.t(gamma = 0.1))
t.symmetric <- fit.tuv(sample, silent = TRUE, symmetric = TRUE)
t.asymmetric <- fit.tuv(sample, silent = TRUE)

# Test symmetric Student-t against asymmetric Student-t in case of data simulated according to a slightly skewed Student-t distribution
lik.ratio.test(t.asymmetric, t.symmetric, conf.level = 0.95)
# -> reject the null hypothesis

t.symmetric <- fit.tuv(sample, silent = TRUE, symmetric = TRUE)
ghyp.asymmetric <- fit.ghypuv(sample, silent = TRUE)

# Test symmetric Student-t against asymmetric generalized hyperbolic using the same data as in the example above
lik.ratio.test(ghyp.asymmetric, t.symmetric, conf.level = 0.95)
# -> keep the null hypothesis
```

Description

The functions `logLik` and `AIC` extract the Log-Likelihood and the Akaike’s Information Criterion from fitted generalized hyperbolic distribution objects. The Akaike information criterion is calculated according to the formula $-2 \cdot \text{log-likelihood} + k \cdot n_{\text{par}}$, where n_{par} represents the number of parameters in the fitted model, and $k = 2$ for the usual AIC.
Usage

```r
## S4 method for signature 'mle.ghyp'
logLik(object, ...)

## S4 method for signature 'mle.ghyp'
AIC(object, ..., k = 2)
```

Arguments

- `object` An object of class `mle.ghyp`.
- `k` The “penalty” per parameter to be used; the default \(k = 2 \) is the classical AIC.
- `...` An arbitrary number of objects of class `mle.ghyp`.

Value

Either the Log-Likelihood or the Akaike’s Information Criterion.

Note

The Log-Likelihood as well as the Akaike’s Information Criterion can be obtained from the function `ghyp.fit.info`. However, the benefit of `logLik` and `AIC` is that these functions allow a call with an arbitrary number of objects and are better known because they are generic.

Author(s)

David Luethi

See Also

- `fit.ghypuv`, `fit.ghypmv`, `lik.ratio.test`, `ghyp.fit.info`, `mle.ghyp-class`

Examples

```r
data(smi.stocks)

## Multivariate fit
fit.mv <- fit.hypmv(smi.stocks, nit = 10)
AIC(fit.mv)
logLik(fit.mv)

## Univariate fit
fit.uv <- fit.tuv(smi.stocks[, "CS"], control = list(maxit = 10))
AIC(fit.uv)
logLik(fit.uv)

# Both together
AIC(fit.uv, fit.mv)
logLik(fit.uv, fit.mv)
```
Expected value, variance-covariance, skewness and kurtosis of generalized hyperbolic distributions

Description

The function mean returns the expected value. The function vcov returns the variance in the univariate case and the variance-covariance matrix in the multivariate case. The functions ghyp.skewness and ghyp.kurtosis only work for univariate generalized hyperbolic distributions.

Usage

```r
## S4 method for signature 'ghyp'
mean(x)

## S4 method for signature 'ghyp'
v cov(object)

ghyp.skewness(object)

ghyp.kurtosis(object)
```

Arguments

- `x`, `object` An object inheriting from class `ghyp`.

Details

The functions ghyp.skewness and ghyp.kurtosis are based on the function `ghyp.moment`. Numerical integration will be used in case a Student.t or variance gamma distribution is submitted.

Value

Either the expected value, variance, skewness or kurtosis.

Author(s)

David Luethi

See Also

`ghyp`, `ghyp-class`, `Egig` to compute the expected value and the variance of the generalized inverse gaussian mixing distribution distributed and its special cases.
Examples

```r
## Univariate: Parametric
vg.dist <- VG(lambda = 1.1, mu = 10, sigma = 10, gamma = 2)
mean(vg.dist)
vcov(vg.dist)
ghyp.skewness(vg.dist)
ghyp.kurtosis(vg.dist)

## Univariate: Empirical
vg.sim <- rghyp(10000, vg.dist)
mean(vg.sim)
var(vg.sim)

## Multivariate: Parametric
vg.dist <- VG(lambda = 0.1, mu = c(55, 33), sigma = diag(c(22, 888)), gamma = 1:2)
mean(vg.dist)
vcov(vg.dist)

## Multivariate: Empirical
vg.sim <- rghyp(50000, vg.dist)
colMeans(vg.sim)
var(vg.sim)
```

Description

This function is intended to be used as a graphical diagnostic tool for fitted multivariate generalized hyperbolic distributions. An array of graphics is created and qq-plots are drawn into the diagonal part of the graphics array. The upper part of the graphics matrix shows scatter plots whereas the lower part shows 2-dimensional histograms.

Usage

```r
## S4 method for signature 'ghyp'
pairs(x, data = ghyp.data(x), main = "'ghyp' pairwise plot",
   nbins = 30, qq = TRUE, gaussian = TRUE,
   hist.col = c("white", topo.colors(40)),
   spline.points = 150, root.tol = .Machine$double.eps^0.5,
   rel.tol = root.tol, abs.tol = root.tol^1.5, ...)
```

Arguments

- `x`: Usually a fitted multivariate generalized hyperbolic distribution of class `mle.ghyp`. Alternatively an object of class `ghyp` and a data matrix.
- `data`: An object coercible to a matrix.
- `main`: The title of the plot.
nbins
qq
gaussian
hist.col
spline.points
root.tol
rel.tol
abs.tol

Arguments

x
range
length

Description

These functions plot probability densities of generalized hyperbolic distribution objects.

Usage

S4 method for signature 'ghyp,missing'
plot(x, range = qghyp(c(0.001, 0.999), x), length = 1000, ...)
S4 method for signature 'ghyp'
lines(x, range = qghyp(c(0.001, 0.999), x), length = 1000, ...)

Author(s)

David Luethi

See Also

pairs, fit.ghypmv, qaghyp, hist2d

Examples

data(smi.stocks)
fitted.smi.stocks <- fit.NIGmv(data = smi.stocks[1:200,])
pairs(fitted.smi.stocks)

plot-lines-methods

Plot univariate generalized hyperbolic densities

The number of bins passed to hist2d.
If TRUE qq-plots are drawn.
If TRUE qq-plots with the normal distribution are plotted.
A vector of colors passed to hist2d.
The number of support points when computing the quantiles used by the qq-plot.
Passed to qaghyp.
The tolerance of the quantiles. Passed to uniroot via qaghyp.
The tolerance of the quantiles. Passed to integrate via qaghyp.
The tolerance of the quantiles. Passed to integrate via qaghyp.
Arguments passed to plot and axis.
This function performs a optimization of a portfolio with respect to one of the risk measures “sd”, “value.at.risk” or “expected.shortfall”. The optimization task is either to find the global minimum risk portfolio, the tangency portfolio or the minimum risk portfolio given a target-return.

Usage

portfolio.optimize(object,
 risk.measure = c("sd", "value.at.risk", "expected.shortfall"),
 type = c("minimum.risk", "tangency", "target.return"),
 level = 0.95, distr = c("loss", "return"),
 target.return = NULL, risk.free = NULL,
 silent = FALSE,...)
portfolio.optimize

Arguments

- **object**: A multivariate ghyp object representing the loss distribution. In case object gives the return distribution set the argument `distr` to "return".
- **risk.measure**: How risk shall be measured. Must be one of “sd” (standard deviation), “value.at.risk” or “expected.shortfall”.
- **type**: The type of the optimization problem. Must be one of “minimum.risk”, “tangency” or “target.return” (see Details).
- **level**: The confidence level which shall be used if `risk.measure` is either “value.at.risk” or “expected.shortfall”.
- **distr**: The default distribution is “loss”. If `object` gives the return distribution set `distr` to “return”.
- **target.return**: A numeric scalar specifying the target return if the optimization problem is of type “target.return”.
- **risk.free**: A numeric scalar giving the risk free rate in case the optimization problem is of type “tangency”.
- **silent**: If TRUE no prompts will appear in the console.
- **...**: Arguments passed to `optim`.

Details

If `type` is “minimum.risk” the global minimum risk portfolio is returned.

If `type` is “tangency” the portfolio maximizing the slope of “(expected return - risk free rate) / risk” will be returned.

If `type` is “target.return” the portfolio with expected return `target.return` which minimizes the risk will be returned.

Note that in case of an elliptical distribution (symmetric generalized hyperbolic distributions) it does not matter which risk measure is used. That is, minimizing the standard deviation results in a portfolio which also minimizes the value-at-risk et cetera.

Value

- **portfolio.dist**: An univariate generalized hyperbolic object of class ghyp which represents the distribution of the optimal portfolio.
- **risk.measure**: The risk measure which was used.
- **risk**: The risk.
- **opt.weights**: The optimal weights.
- **converged**: Convergence returned from optim.
- **message**: A possible error message returned from optim.
- **n.iter**: The number of iterations returned from optim.
Note

In case object denotes a non-elliptical distribution and the risk measure is either “value.at.risk” or “expected.shortfall”, then the type “tangency” optimization problem is not supported.

Constraints like avoiding short-selling are not supported yet.

Author(s)

David Luethi

See Also

transform, fit.ghypmv

Examples

data(indices)

t.object <- fit.tmv(-indices, silent = TRUE)
gauss.object <- fit.gaussmv(-indices)

t.ppf <- portfolio.optimize(t.object,
 risk.measure = "expected.shortfall",
 type = "minimum.risk",
 level = 0.99,
 distr = "loss",
 silent = TRUE)

gauss.ppf <- portfolio.optimize(gauss.object,
 risk.measure = "expected.shortfall",
 type = "minimum.risk",
 level = 0.99,
 distr = "loss")

par(mfrow = c(1, 3))

plot(c(t.ppf$risk, gauss.ppf$risk),
 c(-mean(t.ppf$portfolio.dist), -mean(gauss.ppf$portfolio.dist)),
 xlim = c(0, 0.035), ylim = c(0, 0.004),
 col = c("black", "red"), lwd = 4,
 xlab = "99 percent expected shortfall",
 ylab = "Expected portfolio return",
 main = "Global minimum risk portfolios")

legend("bottomleft", legend = c("Asymmetric t", "Gaussian"),
 col = c("black", "red"), lty = 1)

plot(t.ppf$portfolio.dist, type = "l",
 xlab = "log-loss ((-1) * log-return)", ylab = "Density")
lines(gauss.ptf$portfolio.dist, col = "red")

weights <- cbind(Asymmetric.t = t.ptf$opt.weights,
 Gaussian = gauss.ptf$opt.weights)

barplot(weights, beside = TRUE, ylab = "Weights")

qq-ghyp
Quantile-Quantile Plot

Description

This function is intended to be used as a graphical diagnostic tool for fitted univariate generalized hyperbolic distributions. Optionally a qq-plot of the normal distribution can be added.

Usage

```r
qqghyp(object, data = ghyp.data(object), gaussian = TRUE, line = TRUE,
       main = "Generalized Hyperbolic Q-Q Plot",
       xlab = "Theoretical Quantiles", ylab = "Sample Quantiles",
       ghyp.pch = 1, gauss.pch = 6, ghyp.lty = "solid",
       gauss.lty = "dashed", ghyp.col = "black", gauss.col = "black",
       plot.legend = TRUE, location = "topleft", legend.cex = 0.8,
       spline.points = 150, root.tol = .Machine$double.eps^0.5,
       rel.tol = root.tol, abs.tol = root.tol^1.5, add = FALSE, ...)
```

Arguments

- **object**: Usually a fitted univariate generalized hyperbolic distribution of class `mle.ghyp`. Additionally an object of class `ghyp` and a data vector.
- **data**: An object coercible to a vector.
- **gaussian**: If TRUE a qq-plot of the normal distribution is plotted as a reference.
- **line**: If TRUE a line is fitted and drawn.
- **main**: An overall title for the plot.
- **xlab**: A title for the x axis.
- **ylab**: A title for the y axis.
- **ghyp.pch**: A plotting character, i.e., symbol to use for quantiles of the generalized hyperbolic distribution.
- **gauss.pch**: A plotting character, i.e., symbol to use for quantiles of the normal distribution.
- **ghyp.lty**: The line type of the fitted line to the quantiles of the generalized hyperbolic distribution.
- **gauss.lty**: The line type of the fitted line to the quantiles of the normal distribution.
- **ghyp.col**: A color of the quantiles of the generalized hyperbolic distribution.
scale-methods

gauss.col A color of the quantiles of the normal distribution.
plot.legend If TRUE a legend is drawn.
location The location of the legend. See legend for possible values.
legend.cex The character expansion of the legend.
spline.points The number of support points when computing the quantiles. Passed to qghyp.
root.tol The tolerance of the quantiles. Passed to uniroot.
rel.tol The tolerance of the quantiles. Passed to integrate.
abs.tol The tolerance of the quantiles. Passed to integrate.
add If TRUE the points are added to an existing plot window. The legend argument then becomes deactivated.
... Arguments passed to plot.

Author(s)
David Luethi

See Also
hist, fit.ghypuv, qghyp, plot, lines

Examples

data(smi.stocks)

smi <- fit.ghypuv(data = smi.stocks[, "Swiss.Re"])

qghyp(smi, spline.points = 100)

qghyp(fit.tuv(smi.stocks[, "Swiss.Re"], symmetric = TRUE),
 add = TRUE, ghyp.col = "red", line = FALSE)

scale-methods Scaling and Centering of ghyp Objects

Description

scale centers and/or scales a generalized hyperbolic distribution to zero expectation and/or unit variance.

Usage

S4 method for signature 'ghyp'
scale(x, center = TRUE, scale = TRUE)
Arguments

x An object inheriting from class ghyp.

center A logical value stating whether the object shall be centered to zero expectation.

scale A logical value stating whether the object shall be scaled to unit variance.

Value

An object of class ghyp.

Author(s)

David Luethi

See Also

transform, mean, vcov.

Examples

data(indices)

t.fit <- fit.tmv(indices)
gauss.fit <- fit.gaussmv(indices)

Compare the fitted Student-t and Gaussian density.
par(mfrow = c(1, 2))

Once on the real scale...
plot(t.fit[,1], type = "l")
lines(gauss.fit[,1], col = "red")

...and once scaled to expectation = 0, variance = 1
plot(scale(t.fit)[,1], type = "l")
lines(scale(gauss.fit)[,1], col = "red")

smi.stocks Daily returns of five swiss blue chips and the SMI

Description

Daily returns from January 2000 to January 2007 of five swiss blue chips and the Swiss Market Index (SMI).

Usage

data(smi.stocks)
Format

- **SMI**: Swiss Market Index.
- **Novartis**: Novartis pharma.
- **CS**: Credit Suisse.
- **Nestle**: Nestle.
- **Swisscom**: Swiss telecom company.
- **Swiss.Re**: Swiss reinsurer.

See Also

- **indices**

Examples

```r
data(smi.stocks)
pairs(smi.stocks)
```

stepAIC.ghyp

Perform a model selection based on the AIC

Description

This function performs a model selection in the scope of the generalized hyperbolic distribution class based on the Akaike information criterion. **stepAIC.ghyp** can be used for the univariate as well as for the multivariate case.

Usage

```r
stepAIC.ghyp(data, dist = c("ghyp", "hyp", "NIG", "VG", "t", "gauss"), 
symmetric = NULL, ...)
```

Arguments

- **data**: A vector, matrix or data.frame.
- **dist**: A character vector of distributions from where the best fit will be identified.
- **symmetric**: Either NULL, TRUE or FALSE. NULL means that both symmetric and asymmetric models will be fitted. For symmetric models select TRUE and for asymmetric models select FALSE.
- **...**: Arguments passed to **fit.ghypuv** or **fit.ghypmv**.
Value

A list with components:

- **best.model**: The model minimizing the AIC.
- **all.models**: All fitted models.
- **fit.table**: A data.frame with columns `model`, `symmetric`, `lambda`, `alpha.bar`, `aic`, `llh` (log-Likelihood), `converged`, `n.iter` (number of iterations) sorted according to the `aic`. In the univariate case three additional columns containing the parameters `mu`, `sigma` and `gamma` are added.

Author(s)

David Luethi

See Also

`lik.ratio.test`, `fit.ghypuv` and `fit.ghypmv`.

Examples

```r
data(indices)

# Multivariate case:
aic.mv <- stepAIC.ghyp(indices, dist = c("ghyp", "hyp", "t", "gauss"),
                        symmetric = NULL, control = list(maxit = 500),
                        silent = TRUE, nit = 500)
summary(aic.mv$best.model)

# Univariate case:
aic.uv <- stepAIC.ghyp(indices[, "stock"], dist = c("ghyp", "NIG", "VG", "gauss"),
                        symmetric = TRUE, control = list(maxit = 500), silent = TRUE)

# Test whether the ghyp-model provides a significant improvement with
# respect to the VG-model:
lik.ratio.test(aic.uv$all.models[[1]], aic.uv$all.models[[3]])
```

Description

Produces a formatted output of a fitted generalized hyperbolic distribution.
Linear transformation and extraction of generalized hyperbolic distributions

Description

The `transform` function can be used to linearly transform generalized hyperbolic distribution objects (see Details). The extraction operator `[` extracts some margins of a multivariate generalized hyperbolic distribution object.

Usage

```r
## S4 method for signature 'mle.ghyp'
transform(as.character(summand), multiplier)

## S3 method for class 'ghyp'
x[i = c(1, 2)]
```
Arguments

_\text{_data} \quad \text{An object inheriting from class ghyp.}\n
\text{summand} \quad \text{A vector.}\n
\text{multiplier} \quad \text{A vector or a matrix.}\n
x \quad \text{A multivariate generalized hyperbolic distribution inheriting from class ghyp.}\n
i \quad \text{Index specifying which dimensions to extract.}\n
\ldots \quad \text{Arguments passed to transform.}\n
Details

If \(X \sim GH \), transform gives the distribution object of \(\text{"multiplier} \times X + \text{summand"} \), where \(X \) is the argument named _\text{_data}.\n
If the object is of class mle.\text{ghyp}, \text{information concerning the fitting procedure (cf. ghyp.fit.info) will be lost as the return value is an object of class ghyp.}\n
Value

An object of class ghyp.\n
Author(s)

David Luethi\n
See Also

scale, ghyp, fit.\text{ghypuv} and fit.\text{ghypmv} for constructors of ghyp objects.\n
Examples

```r
## Mutivariate generalized hyperbolic distribution
multivariate.ghyp <- ghyp(sigma=var(matrix(rnorm(9),ncol=3)), mu=1:3, gamma=-2:0)

## Dimension reduces to 2
transform(multivariate.ghyp, multiplier=matrix(1:6,nrow=2), summand=10:11)

## Dimension reduces to 1
transform(multivariate.ghyp, multiplier=1:3)

## Simple transformation
transform(multivariate.ghyp, summand=100:102)

## Extract some dimension
multivariate.ghyp[1]
multivariate.ghyp[c(1, 3)]
```
Index

*Topic **classes**
 ghyp.mle.ghyp-classes, 21

*Topic **datagen**
 ghyp-distribution, 16
 ghyp-package, 2
 gig-distribution, 26

*Topic **datasets**
 indices, 30
 smi.stocks, 42

*Topic **distribution**
 fit.ghypmv, 7
 fit.ghypuv, 10
 ghyp-constructors, 12
 ghyp-distribution, 16
 ghyp-package, 2
 gig-distribution, 26

*Topic **hplot**
 ghyp-package, 2
 hist-methods, 29
 pairs-methods, 35
 plot-lines-methods, 36
 qq-ghyp, 40

*Topic **iteration**
 fit.ghypmv, 7
 fit.ghypuv, 10
 ghyp-package, 2
 portfolio.optimize, 37

*Topic **methods**
 coef-method, 6
 hist-methods, 29
 logLik-AIC-methods, 32
 mean-vcov-skew-kurt-methods, 34
 pairs-methods, 35
 plot-lines-methods, 36
 scale-methods, 41
 summary-method, 44
 transform-extract-methods, 45

*Topic **misc**
 ghyp-risk-performance, 23

*Topic **models**
 fit.ghypmv, 7
 fit.ghypuv, 10
 ghyp-constructors, 12
 ghyp-distribution, 16
 ghyp-package, 2
 qq-ghyp, 40

*Topic **multivariate**
 fit.ghypmv, 7
 ghyp-constructors, 12
 ghyp-distribution, 16
 ghyp-package, 2
 pairs-methods, 35
 portfolio.optimize, 37

*Topic **optimize**
 fit.ghypmv, 7
 fit.ghypuv, 10
 ghyp-package, 2
 portfolio.optimize, 37

*Topic **package**
 ghyp-package, 2

*Topic **utilities**
 coef-method, 6
 ghyp-get, 19
 ghyp-risk-performance, 23
 ghyp.moment, 25
 lik.ratio.test, 31
 logLik-AIC-methods, 32
 mean-vcov-skew-kurt-methods, 34
 scale-methods, 41
 stepAIC.ghyp, 43
 transform-extract-methods, 45
 [, 4, 22
 [,ghyp,numeric,missing,missing-method (transform-extract-methods), 45
 [.,ghyp, 7
 [.ghyp(transform-extract-methods), 45
 AIC, 4, 20, 22, 32
AIC, mle.ghyp-method
 (logLik-AIC-methods), 32
AIC.mle.ghyp (logLik-AIC-methods), 32
axis, 36
ccoef, 4, 15, 20, 22, 45
coef.ghyp-method (coef-method), 6
coef-method, 6
coef.ghyp (coef-method), 6
coefficients.ghyp-method (coef-method), 6
d/p/q/r/ES/ghyp, 15
dghyp, 3, 14
dghyp (ghyp-distribution), 16
dgig, 4
dgig (gig-distribution), 26
Egig, 26, 34
Egig (gig-distribution), 26
ESghyp, 3, 18
ESghyp (ghyp-risk-performance), 23
ESgig, 4
ESgig (gig-distribution), 26
fit.gaussmv, 3
fit.gaussmv (fit.ghypmv), 7
fit.gaussuv, 3
fit.gaussuv (fit.ghypuv), 10
fit.ghypmv, 3, 7, 7, 11, 15, 18, 20, 21, 23, 28,
 33, 36, 39, 43–46
fit.ghypuv, 3, 7, 9, 10, 15, 18, 20, 21, 23, 24,
 28, 30, 32, 33, 41, 43–46
fit.hypmv, 3, 11, 21
fit.hypmv (fit.ghypmv), 7
fit.hypuv, 3, 9, 21
fit.hypuv (fit.ghypuv), 10
fit.ingmv, 3, 11
fit.ingmv (fit.ghypmv), 7
fit.inguv, 3, 9
fit.inguv (fit.ghypuv), 10
fit.tmv, 3, 11
fit.tmv (fit.ghypmv), 7
fit.tuv, 3, 9
fit.tuv (fit.ghypuv), 10
fit.ingmv, 3, 11
fit.ingmv (fit.ghypmv), 7
fit.inguv, 3, 9
fit.inguv (fit.ghypuv), 10
gauss, 3, 21, 23
gauss (ghyp-constructors), 12
ghyp, 3, 6, 7, 14, 17–25, 29, 34–36, 38, 40, 42,
 46
ghyp (ghyp-constructors), 12
ghyp-class (ghyp-mle.ghyp-classes), 21
ghyp-constructors, 12
ghyp-distribution, 16
ghyp-get, 19
ghyp-mle.ghyp-classes, 21
ghyp-package, 2
ghyp-risk-performance, 23
ghyp.data, 4, 8
ghyp.data (ghyp-get), 19
ghyp.dim, 4
ghyp.dim (ghyp-get), 19
ghyp.fit.info, 4, 7–9, 11, 33, 45, 46
ghyp.fit.info (ghyp-get), 19
ghyp.kurtosis, 3
ghyp.kurtosis
 (mean-vcov-skew-kurt-methods), 34
ghyp.moment, 4, 25, 34
ghyp.name, 4
ghyp.name (ghyp-get), 19
ghyp.omega, 3, 18
ghyp.omega (ghyp-risk-performance), 23
ghyp.skewness, 3
ghyp.skewness
 (mean-vcov-skew-kurt-methods), 34
gig-distribution, 26
grad, 28
hist, 4, 22, 30, 37, 41
hist.ghyp-method (hist-methods), 29
hist-methods, 29
hist.ghyp (hist-methods), 29
hist2d, 36
hyp, 3, 17, 21, 23
hyp (ghyp-constructors), 12
indices, 30, 43
integrate, 17, 18, 24, 25, 27, 28, 36, 41
legend, 29, 30, 41
lik.ratio.test, 4, 31, 33, 44
lines, 4, 22, 30, 36, 37, 41
INDEX

lines, ghyp-method (plot-lines-methods), 36
lines-methods (plot-lines-methods), 36
lines.ghyp (plot-lines-methods), 36
logLik, 4, 20, 22, 32
logLik.mle.ghyp-method
 (logLik-AIC-methods), 32
logLik-AIC-methods, 32
logLik.mle.ghyp (logLik-AIC-methods), 32
mean, 3, 20, 22, 26, 42, 45
mean, ghyp-method
 (mean-vcov-skew-kurt-methods), 34
mean-methods
 (mean-vcov-skew-kurt-methods), 34
mean-vcov-skew-kurt-methods, 34
mean.ghyp
 (mean-vcov-skew-kurt-methods), 34
mle.ghyp, 8, 9, 11, 19, 20, 29, 33, 35, 40, 45, 46
mle.ghyp-class (ghyp-mle.ghyp-classes), 21

NIG, 3, 17, 21, 23
NIG (ghyp-constructors), 12

optim, 9, 11, 19, 20, 23, 38

pairs, 4, 18, 22, 36, 37
pairs.ghyp-method (pairs-methods), 35
pairs-methods, 35
pairs.ghyp (pairs-methods), 35
pghyp, 3
pghyp (ghyp-distribution), 16
pgig, 4
pgig (ghyp-distribution), 26
plot, 4, 22, 29, 30, 36, 37, 41
plot, ghyp, missing-method
 (plot-lines-methods), 36
plot-lines-methods, 36
plot-methods (plot-lines-methods), 36
plot.ghyp (plot-lines-methods), 36
portfolio.optimize, 3, 18, 24, 37

qghyp, 3, 24, 37, 41
qghyp (ghyp-distribution), 16
qgig, 4
qgig (gig-distribution), 26
qq-ghyp, 40
qaghyp, 4, 18, 29, 30, 36, 37
qaghyp (qq-ghyp), 40
rghyp, 3
rghyp (ghyp-distribution), 16
rgig, 4, 17
rgig (gig-distribution), 26

scale, 4, 22, 46
scale, ghyp-method (scale-methods), 41
scale-methods, 41
scale.ghyp (scale-methods), 41
show, ghyp-method
 (ghyp-mle.ghyp-classes), 21
show, mle. ghyp-method
 (ghyp-mle.ghyp-classes), 21
show.ghyp (ghyp-mle.ghyp-classes), 21
show.mle.ghyp (ghyp-mle.ghyp-classes), 21
smi.stocks, 30, 42
spline, 18, 28
stepAIC.ghyp, 3, 32, 43
student.t, 3, 17, 21, 23
student.t (ghyp-constructors), 12
subsetting, 18
summary, 4, 22
summary.mle.ghyp-method
 (summary-method), 44
summary-method, 44
summary-methods (summary-method), 44
summary.mle.ghyp (summary-method), 44
transform, 4, 7, 22, 39, 42
transform, ghyp-method
 (transform-extract-methods), 45
transform-extract-methods, 45
transform.ghyp
 (transform-extract-methods), 45
transformation, 18
unqroot, 17, 27, 28, 36, 41

vcov, 3, 20, 22, 26, 42, 45
vcov, ghyp-method
 (mean-vcov-skew-kurt-methods), 34
vcov-methods
 (mean-vcov-skew-kurt-methods),
 34
vcov.ghyp
 (mean-vcov-skew-kurt-methods),
 34
VG, 3, 17, 21, 23
VG (ghyp-constructors), 12

xxx.ad, 23