Package ‘flexCWM’

August 31, 2018

Type Package
Title Flexible Cluster-Weighted Modeling
Version 1.9
Date 2018-08-30
Author Mazza A., Punzo A., Ingrassia S.
Maintainer Angelo Mazza <a.mazza@unict.it>
Description Allows for maximum likelihood fitting of cluster-weighted models, a class of mixtures of regression models with random covariates.
License GPL-2
LazyLoad yes
Depends R (>= 3.0.0)
Imports stats, graphics, parallel, numDeriv, mclust, statmod, ContaminatedMixt
NeedsCompilation no
Repository CRAN
Date/Publication 2018-08-30 23:20:03 UTC

R topics documented:

 flexCWM-package .. 2
cwm .. 3
ExCWM .. 7
Extractor functions ... 8
plot.cwm .. 9
students .. 10

Index 12
Description

Allows for maximum likelihood fitting of cluster-weighted models, a class of mixtures of regression models with random covariates.

Details

Package: CWM
Type: Package
Version: 1.7
Date: 2017-02-14
License: GNU-2

Author(s)

Mazza A., Punzo A., Ingrassia S.
Maintainer: Mazza Angelo <a.mazza@unict.it>

References

See Also
cwm
cwm
Fit for the CWM

Description

Maximum likelihood fitting of the cluster-weighted model by the EM algorithm.

Usage

```r
cwm(formulaY = NULL, familyY = gaussian, data, Xnorm = NULL, Xbin = NULL,
Xpois = NULL, Xmult = NULL, modelXnorm = NULL, Xbtrials = NULL, k = 1:3,
initialization = c("random.soft", "random.hard", "kmeans", "mclust", "manual"),
start.z = NULL, seed = NULL, maxR = 1, iter.max = 1000, threshold = 1.0e-04,
eps = 1e-100, parallel = FALSE, pwarning = FALSE)
```

Arguments

- `formulaY` an optional object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- `familyY` a description of the error distribution and link function to be used for the conditional distribution of `Y` in each mixture component. This can be a character string naming a family function, a family function or the result of a call to a family function. The following family functions are supported:
 - binomial(link = "logit")
 - gaussian(link = "identity")
 - Gamma(link = "log")
 - inverse.gaussian(link = "1/mu^2")
 - poisson(link = "log")
 - student.t(link = "identity")
 Default value is `gaussian(link = "identity")`.
- `data` an optional `data.frame`, `list`, or `environment` with the variables needed to use `formulaY`.
- `Xnorm`, `Xbin`, `Xpois`, `Xmult` an optional matrix containing variables to be used for marginalization having normal, binomial, Poisson and multinomial distributions.
- `modelXnorm` an optional vector of character strings indicating the parsimonious models to be fitted for variables in `Xnorm`. The default is `c("E", "V")` for a single continuous covariate, and `c("EII", "VII", "EEI", "VEI", "VVI", "EEE", "VEE", "EVE", "EEV", "VVE")` for multivariate continuous covariates (see `mixture: gpcm` for details).
- `Xbtrials` an optional vector containing the number of trials for each column in `Xbin`. If omitted, the maximum of each column in `Xbin` is used.
- `k` an optional vector containing the numbers of mixture components to be tried. Default value is `1:3`.

Parallelization

- `parallel` logical. If `TRUE`, the EM algorithm is run in parallel. Default value is `FALSE`.
- `pwarning` logical. If `TRUE`, warning messages will be displayed. Default value is `FALSE`.

Initialization

- `initialization` character string specifying the algorithm used for the initial parameter estimates. Options are:
 - `random`: starting parameter estimates are drawn from a normal distribution.
 - `kmeans`: starting parameter estimates are obtained from `kmeans` using the `Xnorm` data.
 - `mclust`: starting parameter estimates are obtained from the `mclust` package.
 - `manual`: the user supplies starting parameter estimates.

- `start.z` vector, the starting values for the allocation vector, z.

- `seed` numeric. If not `NULL`, initialization is done using the function `set.seed`.

- `maxR` numeric. Maximum number of iterations.

- `iter.max` numeric. Maximum number of iterations for the iterations of the EM algorithm.

- `threshold` numeric. The threshold value for the convergence criteria.

- `eps` numeric. Convergence criterion for the iterations of the EM algorithm.

initialization an optional character string. It sets the initialization strategy for the EM-algorithm. It can be:
- "random.soft"
- "random.hard"
- "kmeans"
- "mclust"
- "manual"
Default value is "random.soft".

start.z matrix of soft or hard classification: it is used only if initialization = "manual". Only models with the same number of mixture components as the columns of this matrix will be fit.

seed an optional scalar. It sets the seed for the random number generator, when random initializations are used; if NULL, current seed is not changed. Default value is NULL.

maxR number of initializations to be tried. Default value is 1.

iter.max an optional scalar. It sets the maximum number of iterations in the EM-algorithm. Default value is 200.

threshold an optional scalar. It sets the threshold for the Aitken acceleration procedure. Default value is 1.0e-04.

eps an optional scalar. It sets the smallest value for eigenvalues of covariance matrices for xnorm. Default value is 1e-100.

parallel When TRUE, the package parallel is used for parallel computation. When several models are estimated, methods summary and print consider the best model according to the information criterion in criterion, among the estimated models having a number of components among those in k an error distribution among those in familyY and a parsimonious model among those in modelXnorm.

pwarning When TRUE, warnings are printed.

Details
When familyY = binomial, the response variable must be a matrix with two columns, where the first column is the number of "successes" and the second column is the number of "failures". When several models have been estimated, methods summary and print consider the best model according to the information criterion in criterion, among the estimated models having a number of components among those in k an error distribution among those in familyY and a parsimonious model among those in modelXnorm.

Value
This function returns a class cwm object, which is a list of values related to the model selected. It contains:

call an object of class call.
formulaY an object of class formula containing a symbolic description of the model fitted.
familyY the distribution used for the conditional distribution of Y in each mixture component.
data a data.frame with the variables needed to use formula Y.
concomitant a list containing Xnorm, Xbin, Xpois, Xmult.
Xbtrials number of trials used for Xbin.
models a list; each element is related to one of the models fitted. Each element is a list and contains:

• posterior posterior probabilities
• iter number of iterations performed in EM algorithm
• k number of (fitted) mixture components.
• size estimated size of the groups.
• cluster classification vector
• loglik final log-likelihood value
• df overall number of estimated parameters
• prior weights for the mixture components
• IC list containing values of the information criteria
• converged logical; TRUE if EM algorithm converged
• GModels a list; each element is related to a mixture component and contains:
 – model a "glm" class object.
 – sigma estimated local scale parameters of the conditional distribution of Y, when family Y is gaussian or student.t
 – t_df estimated degrees of freedom of the t distribution, when family Y is student.t
 – nuY estimated shape parameter, when family Y is Gamma. The gamma distribution is parameterized according to McCullagh & Nelder (1989, p. 30)
• concomitant a list with estimated concomitant variables parameters for each mixture component
 – normal.d, multinomial.d, poisson.d, binomial.d marginal distribution of concomitant variables
 – normal.mu mixture component means for Xnorm
 – normal.Sigma mixture component covariance matrices for Xnorm
 – normal.model models fitted for Xnorm
 – multinomial.probs multinomial distribution probabilities for Xmult
 – poisson.lambda lambda parameters for Xpois
 – binomial.p binomial probabilities for Xbin

Author(s)

Mazza A., Punzo A., Ingrassia S.
References

See Also

`flexCWM-package`

Examples

```r
## an exemple with artificial data
data("ExCWM")
attach(ExCWM)
str(ExCWM)

# mixtures of binomial distributions
resXbin <- cwm(Xbin = Xbin, k = 1:2, initialization = "kmeans")
getParXbin(resXbin)

# Mixtures of Poisson distributions
resXpois <- cwm(Xpois = Xpois, k = 1:2, initialization = "kmeans")
getParXpois(resXpois)

# parsimonious mixtures of multivariate normal distributions
resXnorm <- cwm(Xnorm = cbind(Xnorm1, Xnorm2), k = 1:2, initialization = "kmeans")
getParXnorm(resXnorm)

## an exemple with real data
data("students")
attach(students)
str(students)

# CWM
fit2 <- cwm(WEIGHT ~ HEIGHT + HEIGHT.F, Xnorm = cbind(HEIGHT, HEIGHT.F),
            k = 2, initialization = "kmeans", modelXnorm = "EEE")
summary(fit2, concomitant = TRUE)
plot(fit2)
```
Description

An artificial data set, with 200 observations, generated by a CWM with 2 mixture components of different size, one binomial response variable, and four covariates with bivariate Gaussian, Poisson and Binomial distribution, respectively.

Usage

data(ExCWM)

Format

A dataset

See Also

flexCWM-package, cwm

Examples

data("ExCWM")
attach(ExCWM)
str(ExCWM)

mixtures of binomial distributions
resXbin <- cwm(Xbin = Xbin, k = 1:2, initialization = "kmeans")
getParXbin(resXbin)

Mixtures of Poisson distributions
resXpois <- cwm(Xpois = Xpois, k = 1:2, initialization = "kmeans")
getParXpois(resXpois)

parsimonious mixtures of multivariate normal distributions
resXnorm <- cwm(Xnorm = cbind(Xnorm1, Xnorm2), k = 1:2, initialization = "kmeans")
getParXnorm(resXnorm)
Extractor functions

Extractors for cwm class objects.

Description

These functions extract values from cwm class objects.

Usage

getBestModel(object, criterion = "BIC", k = NULL, modelXnorm = NULL, familyY = NULL)
getPosterior(object, ...)
getSize(object, ...)
getCluster(object, ...)
getParGLM(object, ...)
getParConcomitant(object, name = NULL, ...)
getPar(object, ...)
getParPrior(object, ...)
getParXnorm(object, ...)
getParXbin(object, ...)
getParXpois(object, ...)
getParXmult(object, ...)
getIC(object, criteria)
whichBest(object, criteria = NULL, k = NULL, modelXnorm = NULL, familyY = NULL)

S3 method for class 'cwm'
summary(object, criterion = "BIC", concomitant = FALSE,
 digits =getOption("digits")-2, ...)

S3 method for class 'cwm'
print(x, ...)

Arguments

object, x a class cwm object.
criterion a string with the information criterion to consider; supported values are: "AIC", "AICc", "AICu", "AIC3". Default value is "BIC".
criteria a vector of strings with the names of information criteria to consider. If NULL all the supported information criteria are considered.
k an optional vector containing the numbers of mixture components to consider. If not specified, all the estimated models are considered.
modelXnorm an optional vector of character strings indicating the parsimonious models to consider for Xnorm. If not specified, all the estimated models are considered.
familyY an optional vector of character strings indicating the conditional distribution of Y in each mixture component to consider. If not specified, all the estimated models are considered.
Plot method for \texttt{cwm} class objects.

Usage

```r
## S3 method for class 'cwm'
plot(x, regr = TRUE, ctype = c("Xnorm","Xbin","Xpois",
"Xmult"), which = NULL, criterion = "BIC", k = NULL,
modelXnorm = NULL, familyY = NULL, histargs=list(breaks=31),...)
```

Arguments

- \texttt{x} An object of class \texttt{cwm}.
- \texttt{regr} boolean, allows for bivariate regression plot.
- \texttt{ctype} a vector with concomitant variables types to plot.
- \texttt{which} a vector with columns number to plot, or "all" for all the columns
- \texttt{criterion} a string with the information criterion to consider; supported values are: "AIC", "AICc", "AICu", "AIC3", Default value is "BIC".

Details

When several models have been estimated, these functions consider the best model according to the information criterion in \texttt{criterion}, among the estimated models having a number of components among those in \texttt{k} an error distribution among those in \texttt{familyY} and a parsimonious model among those in \texttt{modelXnorm}. \texttt{getIC} provides values for the information criteria in \texttt{criteria}.

The \texttt{getBestModel} method returns a \texttt{cwm} object containing the best model only, selected as described above.

Examples

```r
# res <- cwm(Y=Y,Xcont=X,k=1:4,seed=1)
#summary(res)
#plot(res)
```
dataset students

Description

A dataframe with data from a survey of 270 students attending a statistics course at the Department of Economics and Business of the University of Catania in the academic year 2011/2012. It contains the following variables:

- GENDER gender of the respondent;
- HEIGHT height of the respondent, measured in centimeters;
- WEIGHT weight of the respondent, measured in kilograms;
- HEIGHT.F height of respondent’s father, measured in centimeters.

Usage

data(students)

Format

A dataset

Source

http://www.economia.unict.it/punzo/
References

See Also

`flexCWM-package, cwm`

Examples

```r
data("students")
attach(students)
str(students)
fit2 <- cwm(HEIGHT ~ HEIGHT + HEIGHT.F, Xnorm = cbind(HEIGHT, HEIGHT.F), k = 2,
            initialization = "kmeans", modelXnorm = "EEE")
summary(fit2, concomitant = TRUE)
plot(fit2)
```
Index

*Topic datasets
 ExCWM, 7
 students, 10

 cwm, 2, 3, 7, 11

 data.frame, 3, 5
detectCores(), 4

 environment, 3
 ExCWM, 7
Extractor functions, 8

 flexCWM-package, 2
formula, 3, 4

 getBestModel (Extractor functions), 8
getCluster (Extractor functions), 8
getIC (Extractor functions), 8
getPar (Extractor functions), 8
getParConcomitant (Extractor functions), 8
getParGLM (Extractor functions), 8
getParPrior (Extractor functions), 8
getParXbin (Extractor functions), 8
getParXmult (Extractor functions), 8
getParXnorm (Extractor functions), 8
getParXpois (Extractor functions), 8
getPosterior (Extractor functions), 8
getsize (Extractor functions), 8
glm, 5

 hist, 10

 list, 3

 mixture: gpcm, 3

 parallel, 4
plot, 10
plot.cwm, 9

print.cwm (Extractor functions), 8

student.t (cwm), 3
students, 10
summary.cwm (Extractor functions), 8

whichBest (Extractor functions), 8