Package ‘denstrip’
February 19, 2015

Type Package
Title Density strips and other methods for compactly illustrating
distributions
Version 1.5.3
Date 2014-02-20
Author Christopher Jackson
Maintainer Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>
Description Graphical methods for compactly illustrating probability distributions, including dens-
ity strips, density regions, sectioned density plots and varying width strips.
License GPL (>= 2)
Depends R (>= 2.15)
LazyLoad yes
Suggests vioplot,lattice,Hmisc
Enhances survival
NeedsCompilation no
Repository CRAN
Date/Publication 2014-02-20 14:12:57

R topics documented:

 denstrip-package .. 2
 bpstrip ... 3
 cistrip .. 5
 densregion .. 6
 densregion.normal .. 8
 densregion.survfit .. 10
 denstrip ... 11
 denstrip.legend ... 15
 denstrip.normal .. 16
 sectioned.density .. 17
 seqToIndices ... 19
 vwstrip ... 20
 vwstrip.normal ... 22
Index

denstrip-package Overview of the denstrip package

Description

Graphical methods for compactly illustrating and comparing distributions, particularly distributions arising from parameter estimation or prediction.

Details

denstrip implements the density strip for illustrating a single univariate distribution. The darkness of the density strip at a point is proportional to the density at that point. A shortcut function denstrip.normal draws the strip for the given normal distribution.

densregion implements the density region, which illustrates the uncertainty surrounding a continuously-varying quantity as a two-dimensional shaded region with darkness proportional to the density. There are shortcut functions densregion.normal and densregion.survfit for computing and drawing the region for normally-distributed predictions and survival curves, respectively.

sectioned_density implements the sectioned density plots of Cohen and Cohen (2006). These illustrate distributions using occlusion and varying shading. They were developed for summarising data, but can also be used for illustrating known distributions.

vwstrip can be used to draw varying-width strips to illustrate distributions, in a similar manner to the violin plot for summarising data. The width of the strip is proportional to the density. A shortcut function vwstrip.normal draws the strip for the given normal distribution.

bpstrip adapts the box-percentile plot to illustrate a distribution instead of observed data. This strip has width proportional to the probability of a more extreme point.

cistrip implements the popular point and line figure for illustrating point and interval estimates, for example from multiple regression.

These methods are discussed in more detail by Jackson (2008).

Each function is designed to add a graphic to an existing set of plot axes. The plots can be added to either base graphics or lattice panels.

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

Box-percentile strips give a compact illustration of a distribution. The width of the strip is proportional to the probability of a more extreme point. This function adds a box-percentile strip to an existing plot.

Usage

```r
bpstrip(x, prob, at, width, horiz=TRUE, scale=1, limits=c(-Inf, Inf),
        col="gray", border=NULL, lwd, lty, ticks=NULL, tlen=1, twd, tty,
        lattice=FALSE)
panel.bpstrip(...)```

**Arguments**

- **x**: Either the vector of points at which the probability is evaluated (if `prob` supplied), or a sample from the distribution (if `prob` not supplied).
- **prob**: Probability, or cumulative density, of the distribution at `x`. If `prob` is not supplied, this is estimated from the sample `x` using `ecdf(x)`.
- **at**: Position of the centre of the strip on the y-axis (if `horiz=TRUE`) or the x-axis (if `horiz=FALSE`).
- **width**: Thickness of the strip at its thickest point, which will be at the median. Defaults to 1/20 of the axis range.
- **horiz**: Draw the strip horizontally (TRUE) or vertically (FALSE).
- **scale**: Alternative way of specifying the thickness of the strip, as a proportion of `width`.
- **limits**: Vector of minimum and maximum values, respectively, at which to terminate the strip.
- **col**: Colour to shade the strip, either as a built-in R colour name (one of `colors()`) or an RGB hex value, e.g. black is "#000000".
- **border**: Colour of the border, see `polygon`. Use `border=NA` to show no border. The default, 'NULL', means to use `par("fg")` or its `lattice` equivalent.
- **lwd**: Line width of the border (defaults to `par("lwd")` or its `lattice` equivalent).
- **lty**: Line type of the border (defaults to `par("lty")` or its `lattice` equivalent).
- **ticks**: Vector of x-positions on the strip to draw tick marks, or NULL for no ticks.
- **tlen**: Length of the ticks, relative to the thickness of the strip.
- **twd**: Line width of these marks (defaults to `par("lwd")` or its `lattice` equivalent).
- **tty**: Line type of these marks (defaults to `par("lty")` or its `lattice` equivalent).
- **lattice**: Set this to TRUE to make `bpstrip` a `lattice` panel function instead of a base graphics function. `panel.bpstrip(x,...)` is equivalent to `bpstrip(x, lattice=TRUE, ...)`. 
- **...**: Other arguments passed to `panel.bpstrip`.
Details

The box-percentile strip looks the same as the box-percentile plot (Esty and Banfield, 2003) which is a generalisation of the boxplot for summarising data. However, `bpstrip` is intended for illustrating distributions arising from parameter estimation or prediction. Either the distribution is known analytically, or an arbitrarily large sample from the distribution is assumed to be available via a method such as MCMC or bootstrapping.

The function `bpplot` in the `Hmisc` package can be used to draw vertical box-percentile plots of observed data.

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References


See Also

`vwstrip`, `cistrip`, `denstrip`

Examples

```r
x <- seq(-4, 4, length=1000)
prob <- pnorm(x)
plot(x, xlim=c(-5, 5), ylim=c(-5, 5), xlab="x", ylab="x", type="n")
bpstrip(x, prob, at=1, ticks=qnorm(c(0.25, 0.5, 0.75)))

Terminate the strip at specific outer quantiles
bpstrip(x, prob, at=2, limits=qnorm(c(0.025, 0.975)))
bpstrip(x, prob, at=3, limits=qnorm(c(0.005, 0.995)))

Compare with density strip
denstrip(x, dnorm(x), at=0)

Estimate the density from a large sample
x <- rnorm(10000)
bpstrip(x, at=4)
```
cistrip  

Line drawings of point and interval estimates

Description

Adds one or more points and lines to a plot, representing point and interval estimates.

Usage

cistrip(x, at, d, horiz=TRUE, pch = 16, cex = 1, lattice=FALSE, ...)
panel.cistrip(...)

Arguments

- **x**  
  Either a vector of three elements corresponding to point estimate, lower limit and upper limit of the interval estimate, respectively, or a numeric matrix or data frame with three columns representing point estimates, lower and upper limits.

- **at**  
  Position of the line on the y-axis (if horiz=TRUE) or the x-axis (if horiz=FALSE).

- **d**  
  Length of the serifs at each end of the line. Defaults to 1/60 of the axis range.

- **horiz**  
  Draw the line horizontally (TRUE) or vertically (FALSE).

- **pch**  
  Character to draw at the point estimate, see points. By default this is a small solid circle, pch=16.

- **cex**  
  Expansion factor for the character at the point estimate, for. A vector can be supplied here, one for each estimate, as in pch. Useful for meta-analysis forest plots.

- **lattice**  
  Set this to TRUE to make cistrip a lattice panel function instead of a base graphics function.

  panel.cistrip(x,...) is equivalent to cistrip(x, lattice=TRUE, ...).

  ...  
  Further arguments passed to the points and segments functions or their lattice equivalents. For example lty, lwd to set the style and thickness of the line.

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

denstrip, vwstrip, bpstrip

Examples

```r
One estimate
x <- c(0.1, -2, 2)
plot(0, type="n", xlim=c(-5, 5), ylim=c(-5, 5), xlab="", ylab="")
abline(h=0, lty=2, col="lightgray")
abline(v=0, lty=2, col="lightgray")
```
densregion

Density regions

Description

A density region uses shading to represent the uncertainty surrounding a continuously-varying quantity, such as a survival curve or a forecast from a time series. The darkness of the shading is proportional to the (posterior, predictive or fiducial) density. This function adds a density region to an existing plot.

Usage

densregion(x, ...)  # Default S3 method:

densregion(x, y, z, pointwise=FALSE, nlevels=100, colmax=par("fg"), colmin="white", scale=1, gamma=1, contour=FALSE, ...)

Arguments

x
  Suppose the continuously-varying quantity varies over a space S. x is a vector of the points in S at which the full posterior / predictive / fiducial distribution will be evaluated.

y
  Vector of ordinates at which the density of the distribution will be evaluated for every point in x.

z
  Matrix of densities on the grid defined by x and y, with rows corresponding to elements of x and columns corresponding to elements of y.

pointwise
  If TRUE then the maximum density at each x is shaded with colmax (default black), and the shading intensity is proportional to the density within each x. If FALSE then the maximum density over all x is shaded with colmax, and the shading is proportional to the density over all x.
nlevels  Number of distinct shades to use to illustrate the varying densities. The default of 100 should result in a plot with smoothly-varying shading.

colmax  Colour to shade the maximum density, either as a built-in R colour name (one of colors()) or an RGB hex value. Defaults to par("fg") which is normally "black", or "#000000".

colmin  Colour to shade the minimum density, likewise. Defaults to "white". If this is set to "transparent", and the current graphics device supports transparency (see rgb), then multiple regions drawn on the same plot will merge smoothly.

scale  Proportion of colmax to shade the maximum density, for example scale=0.5 with colmax="black" for a mid-grey colour.

gamma  Gamma correction to apply to the colour palette, see denstrip.

contour  If TRUE then contours are added to illustrate lines of constant density.

...  Further arguments passed to or from other methods, such as the contour function for drawing contours.

Details

The plot is shaded by interpolating the value of the density between grid points, using the algorithm described by Cleveland (1993) as implemented in the filled.contour function.

With lattice graphics, similar plots can be implemented using the contourplot or levelplot functions.

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References


See Also

densregion.survfit, densregion.normal, denstrip

Examples

## Predictive uncertainty around a hypothetical regression line

```r
x <- 1:10
nx <- length(x)
est <- seq(0, 1, length=nx)
lcl <- seq(-1, 0, length=nx)
ucl <- seq(1, 2, length=nx)
se <- (est - lcl)/qnorm(0.975)
y <- seq(-3, 3, length=100)
```
densregion.normal

Density regions based on normal distributions

Description

Adds a density region to an existing plot of a normally-distributed quantity with continuously-varying mean and standard deviation, such as a time series forecast. Automatically computes a reasonable set of ordinates to evaluate the density at, which span the whole forecast space.

Usage

```r
S3 method for class 'normal'
densregion(x, mean, sd, ny=20, ...)
```

Arguments

- **x**
  - Suppose the continuously-varying quantity varies over a space $S$. $x$ is a vector of the points in $S$ at which the posterior / predictive / fiducial distribution will be evaluated.
- **mean**
  - Vector of normal means at each point in $x$.
- **sd**
  - Vector of standard deviations at each point in $x$.
- **ny**
  - Minimum number of points to calculate the density at for each $x$. The density is calculated for at least $ny$ equally spaced normal quantiles for each point. The density is actually calculated at the union over $x$ of all such points, for each $x$.
- **...**
  - Further arguments passed to `densregion`. 
Details

The plot is shaded by interpolating the value of the density between grid points, using the algorithm described by Cleveland (1993) as implemented in the `filled.contour` function.

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References


See Also

densregion, densregion.survfit, denstrip

Examples

```r
Time series forecasting

(fit <- arima(USSeasDeaths, order = c(0,1,1),
 seasonal = list(order=c(0,1,1))))
pred <- predict(fit, n.ahead = 36)
plot(USSeasDeaths, xlim=c(1973, 1982), ylim=c(5000, 15000))

Compute normal forecast densities automatically (slow)
densregion.normal(time(pred$pred), pred$pred, pred$se,
 pointwise=TRUE, colmax="darkgreen")
lines(pred$pred, lty=2)
lines(pred$pred + qnorm(0.975)*pred$se, lty=3)
lines(pred$pred - qnorm(0.975)*pred$se, lty=3)

Compute forecast densities by hand (more efficient)

nx <- length(pred$pred)
y <- seq(5000, 15000, by=100)
z <- matrix(nrow=nx, ncol=length(y))
for(i in 1:nx)
 z[i,] <- dnorm(y, pred$pred[i], pred$se[i])
plot(USSeasDeaths, xlim=c(1973, 1982), ylim=c(5000, 15000))
densregion(time(pred$pred), y, z, colmax="darkgreen", pointwise=TRUE)
lines(pred$pred, lty=2)
lines(pred$pred + qnorm(0.975)*pred$se, lty=3)
lines(pred$pred - qnorm(0.975)*pred$se, lty=3)

densregion(time(pred$pred), y+2000, z, colmax="darkblue", pointwise=TRUE)
```
densregion.survfit  

**Density regions for survival curves**

---

**Description**

Adds a density region to a survival plot. The shading of the region has darkness proportional to the fiducial density of the point. This distribution is assumed to be normal with standard deviation calculated using the lower confidence limit stored in the survival curve object.

**Usage**

```r
S3 method for class 'survfit'
densregion(x, ny=20, ...)
```

**Arguments**

- `x`  
  Survival curve object, returned by `survfit`. Confidence intervals must have been calculated, using `conf.type`.

- `ny`  
  Minimum number of points to calculate the density at for each event time. The default of 20 should be sufficient to obtain smooth-looking plots.

- `...`  
  Further arguments passed to `densregion.default`.

**Details**

The density is calculated at a grid of points, and interpolated using the method referred to in `densregion`.

**Note**

In general, this approach can only illustrate one survival curve per plot. Though if the graphics device supports transparency (e.g. PDF) multiple curves can be made to overlap smoothly - see the example below.

**Author(s)**

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

**References**


**See Also**

densregion, densregion.normal, denstrip
Examples

library(survival)
fit <- survfit(Surv(time, status) ~ 1, data=aml, conf.type="log-log")
plot(fit, col=0)
densregion(fit)
lines(fit, lwd=3, conf.int=FALSE, lty=1)
lines(fit, lwd=3, conf.int=TRUE, lty=2)

## Wider CIs based on log survival
fit <- survfit(Surv(time, status) ~ 1, data=aml, conf.type="log")
plot(fit, col=0)
densregion(fit) # Big variation in maximum density
plot(fit, col=0)
densregion(fit, pointwise=TRUE, colmax="maroon4")
par(new=TRUE)
plot(fit)

## Narrower CIs based on untransformed survival.
## Normal assumption probably unrealistic
fit <- survfit(Surv(time, status) ~ 1, data=aml, conf.type="plain")
plot(fit, col=0)
densregion(fit, pointwise=TRUE, colmax="darkmagenta")
par(new=TRUE)
plot(fit)

## Multiple survival curves on same axes
## Should overlap smoothly on devices that allow transparency
fit2 <- survfit(Surv(time, status) ~ x, data=aml, conf.type="log-log")
fit2x1 <- survfit(Surv(time, status) ~ 1, data=aml,
                 conf.type="log-log", subset=(x="Maintained"))
fit2x0 <- survfit(Surv(time, status) ~ 1, data=aml,
                 conf.type="log-log", subset=(x="Nonmaintained"))
plot(fit2, lwd=3, xlab="Weeks", ylab="Survival", xlim=c(0, 60),
     lty=1:2, col=c("red", "blue"), conf.int=TRUE, mark.time=TRUE)
densregion(fit2x1, colmax="red", gamma=2)
densregion(fit2x0, colmax="blue", gamma=2)

denstrip

Description

The density strip illustrates a univariate distribution as a shaded rectangular strip, whose darkness at a point is proportional to the probability density. The strip is darkest at the maximum density and fades into the background at the minimum density. It may be used to generalise the common point-and-line drawing of a point and interval estimate, by representing the entire posterior or predictive distribution of the estimate. This function adds a density strip to an existing plot.
Usage
denstrip(x, dens, at, width, horiz=TRUE, colmax, colmin="white",
scale=1, gamma=1, ticks=flix, tlen=1.5, twd, tcol, mticks=NULL,
mlen=1.5, mwd, mcol, lattice=FALSE, ...)
panel.denstrip(...)

Arguments

x Either the vector of points at which the density is evaluated (if dens supplied),
or a sample from the distribution (if dens not supplied).
dens Density at x. If dens is not supplied, the density of the sample x is estimated by
kernel density estimation, using density(x, ...).
at Position of the centre of the strip on the y-axis (if horiz=TRUE) or the x-axis (if
horiz=FALSE).
width Thickness of the strip, that is, the length of its shorter dimension. Defaults to
1/30 of the axis range.
horiz Draw the strip horizontally (TRUE) or vertically (FALSE).
colmax Colour at the maximum density, either as a built-in R colour name (one of
colors()) or an RGB hex value. Defaults to par("fg") which is normally
"black", or "#000000". Or in lattice, defaults to trellis.par.get("add.line")$col.
colmin Colour to shade the minimum density, likewise. Defaults to "white". If this is set
to "transparent", and the current graphics device supports transparency (see
rgb), then overlapping strips will merge smoothly.
scale Proportion of colmax to shade the maximum density, for example scale=0.5
with colmax="black" for a mid-grey colour.
gamma Gamma correction to apply to the colour palette. The default of 1 should give an
approximate perception of darkness proportional to density, but this may need
to be adjusted for different displays. Values of gamma greater than 1 produce
colours weighted towards the lighter end, and values of between 0 and 1 produce
darker colours.
ticks Vector of x-positions on the strip to draw tick marks, or NULL for no ticks.
tlen Length of these tick marks relative to the strip width.
twd Line thickness of these marks (defaults to par("lwd"), or in lattice, to
trellis.par.get("add.line")$lwd*2).
tcol Colour of the tick marks. Defaults to colmax.
mticks x-position to draw a thicker tick mark or tick marks (for example, at the mean
or median).
mlen Length of this mark relative to the strip width.
mwd Line thickness of this mark (defaults to par("lwd")*2, or in lattice, to trellis.par.get("add.line")$lwd*2).
mcol Colour of this mark. Defaults to colmax.
lattice Set this to TRUE to make denstrip a lattice panel function instead of a base
graphics function.
panel.denstrip(x,...) is equivalent to denstrip(x, lattice=TRUE, ...).
...
Additional arguments supplied to density(x,...), if the density is being estimated. For example, bw to change the bandwidth of the kernel.
In other software

An add-on which enables the WinBUGS 1.4 software for Bayesian analysis to draw density strips is available from http://www.mrc-bsu.cam.ac.uk/personal/chris/papers/denstrip_wbpatch.txt. Open this file in WinBUGS and select Tools->Decode->Decode All. They will then be available via the Inference/Compare menu.

In OpenBUGS (http://www.openbugs.info) density strips are available via the Inference/Compare menu.

See this blog post: http://blogs.sas.com/content/graphicspeaking/2012/11/03/density-strip-plot/, for density strips in SAS.

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References


See Also
denstrip.legend, densregion.

Examples

```r
Illustrate a known standard normal distribution
Various settings to change the look of the plot

x <- seq(-4, 4, length=10000)
dens <- dnorm(x)
plot(x, xlab="x", ylab="x", type="n")
denstrip(x, dens, at=0) # default width
denstrip(x, dens, width=0.5, at=0)
denstrip(x, dens, at=-4, ticks=c(-2, 0, 2))
denstrip(x, dens, at=-3, ticks=c(-2, 2), mticks=0)
denstrip(x, dens, at=-2, ticks=c(-2, 2), mticks=0, mlen=3, mwd=4, colmax="#55AABB")
denstrip(x, dens, at=1, ticks=c(-2, 2), tlen=3, twd=3)
denstrip(x, dens, at=-4, ticks=c(-2, 2), mticks=0, colmax="darkgreen", horiz=FALSE)
x <- rnorm(1000) # Estimate the density
denstrip(x, width=0.2, at=-3, ticks=c(-2, 2), mticks=0, colmax="darkgreen", horiz=FALSE)
denstrip(x, at=2, width=0.5, gamma=2.2)
denstrip(x, at=3, width=0.5, gamma=1/2.2)

Specifying colour of minimum density
par(bg="lightyellow")
plot(x, xlab="x", ylab="x", type="n")
x <- seq(-4, 4, length=10000)
```
dens <- dnorm(x)
## Equivalent ways of drawing same distribution
denstrip(x, dens, at=-1, ticks=c(-2, 2), mticks=0, colmax="darkmagenta")
denstrip(x, dens, at=-2, ticks=c(-2, 2), mticks=0, colmax="darkmagenta",
colmin="lightyellow")
## ...though the next only works if graphics device supports transparency
denstrip(x, dens, at=-3, ticks=c(-2, 2), mticks=0, colmax="darkmagenta",
colmin="transparent")
denstrip(x, dens, at=-4, ticks=c(-2, 2), mticks=0, colmax="#800080", colmin="white")

## Alternative to density regions (\link{densregion.survfit}) for
## survival curves - a series of vertical density strips with no
## interpolation

library(survival)
fit <- survfit(Surv(time, status) ~ 1, data=aml, conf.type="log-log")
plot(fit, col=0)
lse <- (log(-log(fit$surv)) - log(-log(fit$upper)))/qnorm(0.975)
n <- length(fit$time)
lstrip <- fit$time - (fit$time-c(0, fit$time[1:(n-1)])) / 2
rstrip <- fit$time + (c(fit$time[2:n], fit$time[n])-fit$time) / 2
for (i in 1:n) {
  y <- exp(-exp(qnorm(seq(0,1,length=1000)[-c(1,1000)],
                 log(-log(fit$surv)))[i], lse[i]))
  z <- dnorm(log(-log(y)), log(-log(fit$surv)))[i], lse[i])
  denstrip(y, z, at=(lstrip[i]+rstrip[i])/2,
           width=rstrip[i]-lstrip[i],
           horiz=FALSE, colmax="darkred")
}
par(new=TRUE)
plot(fit, lwd=2)

## Use for lattice graphics (first example from help(xyplot))

library(lattice)
Depth <- equal.count(quakes$depth, number=8, overlap=.1)
xyplot(lat ~ long | Depth, data = quakes,
       panel = function(x, y) {
         panel.xyplot(x, y)
         panel.denstrip(x, horiz=TRUE, at=-10, ticks=mean(x))
         panel.denstrip(y, horiz=FALSE, at=165, ticks=mean(y))
       })

## Lattice example data: heights of singing voice types

bwplot(voice.part ~ height, data=singer, xlab="Height (inches)",
       panel=panel.denstrip, xlab=c(50,80))
bwplot(voice.part ~ height, data=singer, xlab="Height (inches)",
       panel = function(x, y) {
         xlist <- split(x, factor(y))
         for (i in seq(along=xlist))
           panel.denstrip(x=xlist[[i]], at=i)
         })
denstrip.legend

Add a legend to a density strip or shaded region

Description

Add a legend to an existing plot with a density strip or shaded region, indicating the mapping of colours to densities.

Usage

denstrip.legend(x, y, width, len, colmax, colmin="white", gamma=1,
horiz=FALSE, max=1, nticks = 5, ticks, value.adj = 0,
cex, main = "Density", lattice=FALSE)
panel.denstrip.legend(...) 

Arguments

x Central x position of the legend.
y Central y position of the legend.
width Width of the legend strip, that is, the length of its shorter dimension. Defaults to 1/30 of the axis range.
len Length of the legend strip, that is, the length of its longer dimension. Defaults to 1/4 of the axis range.
colmax Colour at the maximum density, either as a built-in R colour name (one of colors()) or an RGB hex value. Defaults to par("fg") or its lattice equivalent, which is "black" by default.
colmin Colour to shade the minimum density, likewise. Defaults to "white". If this is set to "transparent", and the current graphics device supports transparency (see rgb), then overlapping strips will merge smoothly.
gamma Gamma correction to apply to the colour palette, see denstrip.
horiz Legend strip drawn vertically (FALSE) or horizontally (TRUE).
max Maximum density on the legend, which is represented by colmax. With the default of 1, the legend indicates the mapping of colours to proportions of the maximum density.
nticks Number of tick marks on the axis adjacent to the legend, if ticks not supplied.
ticks Positions of numbered ticks on the axis adjacent to the legend. Defaults to nticks equally spaced ticks between 0 and the maximum density.
value.adj Extra adjustment for the axis labels to the right (if horiz=FALSE) or downwards (if horiz=TRUE).
cex Text expansion. Defaults to par("cex") * 0.75 or trellis.par.get("axis.text")$cex * 0.75.
main  Text to place above the legend.

lattice  Set this to TRUE to make denstrip.legend a lattice panel function instead of a base graphics function.

panel.denstrip.legend(x,...) is equivalent to denstrip.legend(x, lattice=TRUE, ...).

...  Other arguments passed to panel.denstrip.legend.

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also
denstrip, densregion

Examples

library(survival)
fit <- survfit(Surv(time, status) ~ 1, data=aml, conf.type="log-log")
plot(fit, col=0)
densregion(fit)
denstrip.legend(100, 0.8)

### TODO if max not supplied - ticks are not meaningful.
### In help example, find actual max dens used for densregion

denstrip.legend(120, 0.8, width=3, len=0.4, value.adj=5)
denstrip.legend(40, 0.9, horiz=TRUE)
denstrip.legend(60, 0.7, horiz=TRUE, width=0.02, len=50, value.adj=0.04)

denstrip.normal  Density strip for a normal or log-normal distribution

Description

Draws a density strip for a normal or log-normal distribution with the given mean and standard deviation, based on computing the density at a large set of equally-spaced quantiles.

Usage

denstrip.normal(mean, sd, log=FALSE, nx=1000, ...)
panel.denstrip.normal(...)
Arguments

- **mean**: Mean of the normal distribution.
- **sd**: Standard deviation of the normal distribution.
- **log**: If TRUE then the strip for a log-normal distribution, with mean and SD on the log scale mean and sd, respectively, is plotted. This may be useful for illustrating hazard ratios or odds ratios.
- **nx**: Number of points to evaluate the density at.
- **...**: Further arguments passed to denstrip, for example, at to position the strip on the y-axis, or lattice=TRUE to use as a lattice panel function.

panel.denstrip.normal(x,...) is equivalent to denstrip.normal(x, lattice=TRUE,...).

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also
denstrip

Examples

```r
x <- seq(-4, 4, length=10000)
dens <- dnorm(x)
plot(x, xlim=c(-5, 5), ylim=c(-1, 2), xlab="x", ylab="", type="n", axes=FALSE)
axis(1)
denstrip(x, dens, at=0, width=0.3)
denstrip.normal(0, 1, at=1, width=0.3)

log-normal distribution
sdlog <- 0.5
x <- rlnorm(10000, 0, sdlog)
plot(x, xlim=c(0, 5), ylim=c(-2, 4), xlab="x", ylab="", type="n",
 axes=FALSE)
axis(1)
abline(v=1, lty=2, col="lightgray")
denstrip(x, at=0, ticks=exp(-sdlog^2), width=0.4) # tick at theoretical maximum density
denstrip(x, at=1, bw=0.1, ticks=exp(-sdlog^2), width=0.4)
denstrip.normal(0, sdlog, log=TRUE, at=3, nx=1000,
 ticks=exp(-sdlog^2), width=0.4)
```

Description

Sectioned density plots (Cohen and Cohen, 2006) use shading and occlusion to give a compact illustration of a distribution, such as the empirical distribution of data.
sectioned.density

Usage

sectioned.density(x, dens, at, width, offset, ny,  
    method=c("kernel","frequency"), nx, horiz=TRUE,  
    up.left = TRUE, colmax, colmin="white", gamma=1,  
    lattice=FALSE, ...)  
panel[sectioned.density(...)]

Arguments

x Either the vector of points at which the density is evaluated (if dens supplied),  
or a sample from the distribution (if dens not supplied).
dens Density at points. If dens is not supplied, the density of the distribution underlying x is estimated using the method specified in method.
at Position of the bottom of the plot on the y-axis (if horiz=TRUE) or position of the right of the plot on the x-axis (if horiz=FALSE) (required).
ny Number of fixed-width intervals for categorising the density.
width Width of individual rectangles in the plot. Defaults to the range of the axis divided by 20.
offset Offset for adjacent rectangles. Defaults to width/3.
method Method of estimating the density of x, when dens is not supplied.  
    If "kernel" (the default) then kernel density estimation is used, via density(x,...).  
    If "frequency" then the density is estimated as the relative frequency in a series of bins, as in Cohen and Cohen (2006). This method is controlled by the number of data bins nx.

nx Number of data bins for the "frequency" density estimation method. The default uses Sturges' formula (see nclass.Sturges, hist).
horiz If horiz=TRUE, then the plot is horizontal and points upwards. If horiz=FALSE then the plot is vertical and points leftwards, as the illustrations in Cohen and Cohen (2006).
up.left If changed to FALSE, then horizontal plots point downwards and vertical plots point rightwards.

colmax Darkest colour, either as a built-in R colour name (one of colors()) or an RGB hex value. Defaults to par("fg") or its lattice equivalent, which is normally "black", or "#000000".

colmin Lightest colour, either as a built-in R colour name (one of colors()) or an RGB hex value. Defaults to white.

gamma Gamma correction to apply to the colour palette, see denstrip.
lattice Set this to TRUE to make sectioned.density a lattice panel function instead of a base graphics function.

... Additional arguments supplied to density(x,...), if method="kernel".

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk> (R implementation)
References


Examples

```r
Fisher's iris data
Various settings to change the look of the plot
hist(iris$Sepal.Length, nclass=20, col="lightgray")
sectioned.density(iris$Sepal.Length, at=0.2)
sectioned.density(iris$Sepal.Length, at=5)
sectioned.density(iris$Sepal.Length, at=10, width=0.5)
hist(iris$Sepal.Length, nclass=20, col="lightgray")
sectioned.density(iris$Sepal.Length, at=7, width=0.5,
 offset=0.1, colmax="darkmagenta")
sectioned.density(iris$Sepal.Length, at=9, width=0.5,
 offset=0.1, ny=15, colmin="lemonchiffon")

frequency method less smooth than kernel density
sectioned.density(iris$Sepal.Length, at=12, width=0.5, offset=0.1,
 method="frequency")
sectioned.density(iris$Sepal.Length, at=13.5, width=0.5, offset=0.1,
 method="frequency", nx=20)

Illustrate a known distribution
x <- seq(-4, 4, length=1000)
dens <- dnorm(x)
plot(x, xlim=c(-5, 5), ylim=c(-5, 5), xlab="x", ylab="x", type="n")
sectioned.density(x, dens, ny=8, at=0, width=0.3)
sectioned.density(x, dens, ny=16, at=2, width=0.1)
sectioned.density(x, dens, at=-3, horiz=FALSE)
sectioned.density(x, dens, at=4, width=0.3, horiz=FALSE)
```

---

*seqToIntervals*  
*Find contiguous sequences in a vector of integers*

**Description**

Get all sequences of contiguous values in a vector of integers.

**Usage**

`seqToIntervals(x)`

**Arguments**

- `x`  
  A vector of integers, for example, representing indices. `x` is coerced to integer, sorted, and unique values extracted, if necessary, before finding the contiguous sequences.
Vwstrip

Description

Varying-width strips give a compact illustration of a distribution. The width of the strip is proportional to the density. This function adds a varying-width strip to an existing plot.

Usage

```r
vwstrip(x, dens, at, width, horiz=TRUE, scale=1, limits=c(-Inf, Inf),
 col="gray", border=NULL, lwd, lty, ticks=NULL, tlen=1, twd, tty,
 lattice=FALSE,...)
panel.vwstrip(...)```

Arguments

- `x` Either the vector of points at which the density is evaluated (if `dens` supplied), or a sample from the distribution (if `dens` not supplied).
- `dens` Density at `x`. If `dens` is not supplied, the density of the sample `x` is estimated by kernel density estimation, using `density(x,...)`.
- `at` Position of the centre of the strip on the y-axis (if `horiz=TRUE`) or the x-axis (if `horiz=FALSE`).
- `width` Thickness of the strip at the maximum density, that is, the length of its shorter dimension. Defaults to 1/20 of the axis range.
- `horiz` Draw the strip horizontally (TRUE) or vertically (FALSE).
- `scale` Alternative way of specifying the thickness of the strip, as a proportion of `width`.

See Also

`sectioned.density`

Examples

```r
seqToIntervals(1:10)  # [1 10]
seqToIntervals(c(1:10, 15:18, 20))  # [1 10; 15 18; 20 20]
# vectorised, so efficient for large vectors x
seqToIntervals(sample(1:100000, size=99999))
```
Varying-width strips look like violin plots. The difference is that violin plots are intended to summarise data, while `vwstrip` is intended to illustrate a distribution arising from parameter estimation or prediction. Either the distribution is known analytically, or an arbitrarily large sample from the distribution is assumed to be available via a method such as MCMC or bootstrapping.

Illustrating outliers is important for summarising data, therefore violin plots terminate at the sample minimum and maximum and superimpose a box plot (which appears like the bridge of a violin, hence the name). Varying-width strips, however, are used to illustrate known distributions which may have unbounded support. Therefore it is important to think about where the strips should terminate (the `limits` argument). For example, the end points may illustrate a particular pair of extreme quantiles of the distribution.

The function `vioplot` in the `vioplot` package and `panel.violin` in the `lattice` package can be used to draw violin plots of observed data.

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

References

See Also
denstrip, bpstrip, cistrip.

Examples

```r
x <- seq(-4, 4, length=10000)
dens <- dnorm(x)
plot(x, xlim=c(-5, 5), ylim=c(-5, 5), xlab="x", ylab="x", type="n")
vwstrip(x, dens, at=1, ticks=qnorm(c(0.025, 0.25, 0.5, 0.75, 0.975)))

## Terminate the strip at specific outer quantiles
vwstrip(x, dens, at=2, limits=qnorm(c(0.025, 0.975)))
vwstrip(x, dens, at=3, limits=qnorm(c(0.005, 0.995)))

## Compare with density strip
denstrip(x, dens, at=0)

## Estimate the density from a large sample
x <- rnorm(10000)
vwstrip(x, at=4)
```

vwstrip.normal Varying width strip for a normal or log-normal distribution

Description

Draws a varying width strip for a normal or log-normal distribution with the given mean and standard deviation, based on computing the density at a large set of equally-spaced quantiles.

Usage

```r
vwstrip.normal(mean, sd, log=FALSE, nx=1000, ...)
panel.vwstrip.normal(...)
```

Arguments

- **mean**: Mean of the normal distribution.
- **sd**: Standard deviation of the normal distribution.
- **log**: If TRUE then the strip for a log-normal distribution, with mean and SD on the log scale mean and sd, respectively, is plotted. This may be useful for illustrating hazard ratios or odds ratios.
- **nx**: Number of points to evaluate the density at.
- **...**: Further arguments passed to `vwstrip`, for example, at to position the strip on the y-axis, or `lattice=TRUE` to use as a lattice panel function.

panel.vwstrip.normal(x,...) is equivalent to vwstrip.normal(x, lattice=TRUE,...).
vwstrip.normal

Author(s)

Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

See Also

vwstrip

Examples

```r
x <- seq(-4, 4, length=10000)
dens <- dnorm(x)
plot(x, xlim=c(-5, 5), ylim=c(-1, 2), xlab="x", ylab="",
     type="n", axes=FALSE)
axis(1)
vwstrip(x, dens, at=0, width=0.4, limits=qnorm(c(0.005, 0.995)))
vwstrip.normal(0, 1, at=1, width=0.4, limits=qnorm(c(0.005, 0.995)))

### log-normal distribution
sdlog <- 0.5
x <- rlnorm(10000, 0, sdlog)
plot(x, xlim=c(0, 5), ylim=c(-1, 3), xlab="x", ylab="",
     type="n", axes=FALSE)
axis(1)
abline(v=1, lty=2, col="lightgray")
vwstrip(x, at=0, width=0.4, ticks=exp(-sdlog^2),
        limits=qlnorm(c(0.005,0.975),0,sdlog))  # tick at theoretical maximum density
vwstrip(x, at=1, width=0.4, bw=0.1, ticks=exp(-sdlog^2),
        limits=qlnorm(c(0.005,0.975),0,sdlog))
vwstrip.normal(0, sdlog, log=TRUE, at=2.5, width=0.4, nx=1000,
               ticks=exp(-sdlog^2), limits=qlnorm(c(0.005,0.975),0,sdlog))
```
Index

*Topic **aplot**
 - bpstrip, 3
 - cistrip, 5
 - densregion, 6
 - densregion.normal, 8
 - densregion.survfit, 10
 - denstrip, 11
 - denstrip.legend, 15
 - denstrip.normal, 16
 - sectioned.density, 17
 - vwstrip, 20
 - vwstrip.normal, 22

*Topic **arith**
 - seqToIntervals, 19

*Topic **color**
 - densregion, 6
 - densregion.normal, 8
 - denstrip, 11
 - denstrip.legend, 15

*Topic **manip**
 - seqToIntervals, 19

*Topic **package**
 - denstrip-package, 2

*Topic **survival**
 - densregion.survfit, 10

 bpplot, 4
 bpstrip, 2, 3, 4, 5, 22

 cistrip, 2, 4, 5, 22
 colors, 3, 7, 12, 18, 21
 contour, 7
 contourplot, 7

 density, 12, 18, 20, 21
 densregion, 2, 6–10, 13, 16
 densregion.default, 10
 densregion.normal, 2, 7, 8, 10
 densregion.survfit, 2, 7, 9, 10
 denstrip, 2, 4, 5, 7, 9, 10, 11, 12, 15–18, 22

 denstrip-package, 2
 denstrip.legend, 13, 15, 16
 denstrip.normal, 2, 16

 ecdf, 3

 filled.contour, 7, 9

 hist, 18

 levelplot, 7

 nclass.Sturges, 18

 panel.bpstrip (bpstrip), 3
 panel.cistrip (cistrip), 5
 panel.denstrip (denstrip), 11
 panel.denstrip.legend (denstrip.legend), 15
 panel.denstrip.normal (denstrip.normal), 16
 panel.sectioned.density (sectioned.density), 17
 panel.violin, 21
 panel.vwstrip (vwstrip), 20
 panel.vwstrip.normal (vwstrip.normal), 22

 par, 3, 12, 15, 18, 21
 points, 5
 polygon, 3, 21

 rgb, 7, 12, 15

 sectioned.density, 2, 17, 18, 20
 segments, 5
 seqToIntervals, 19
 survfit, 10

 trellis.par.get, 12, 15

 vioplot, 21

 vwstrip, 2, 4, 5, 20, 21–23
 vwstrip.normal, 2, 22