Package ‘benchmark’

February 19, 2015

Type Package
Title Benchmark Experiments Toolbox
Version 0.3-6
Date 2014-05-02
Depends R (>= 2.10), utils, proto, ggplot2, relations, psychotools
Imports reshape, scales, plyr
Suggests coin, multcomp, lme4, e1071, entropy, archetypes, Rgraphviz, psychotree
Description The benchmark package provides a toolbox for setup, execution and analysis of benchmark experiments. Main focus is the analysis of data accumulating during the execution -- one primary objective is the statistical correct computation of the candidate algorithms' order.
License GPL (>= 2)
URL http://benchmark.r-forge.r-project.org/
Collate 'algperf-beplot0.R' 'testprocedure.R' 'proto.R'
 'algperf-paircomp.R' 'algperf-preference.R'
 'algperf-visualizations.R' 'warehouse.R' 'algperf.R'
 'as.psychobench.R' 'as.warehouse.R' 'benchmark.R' 'bsgraph.R'
 'bsplot.R' 'datachar-visualizations.R'
 'dataset-characteristics.R' 'dataset.R'
 'dataset-characterization.R' 'testres-analysis.R'
 'testres-visualizations.R'
Author Manuel J. A. Eugster [aut, cre]
Maintainer Manuel J. A. Eugster <manuel@mjae.net>
NeedsCompilation no
Repository CRAN
Date/Publication 2014-05-02 21:48:47
R topics documented:

as.dataset .. 2
as.psychobench ... 3
as.relation.PaircompDecision 4
as.warehouse.mlr.bench.result 4
benchmark ... 5
beplot0 ... 6
boxplot.AlgorithmPerformance 7
bs.sampling ... 8
bs.graph0 .. 9
bs.plot0 ... 10
characterize .. 11
fittime ... 12
g.raw .. 12
monks3raw ... 13
paircomp ... 13
plot.DatasetCharacterization 14
plot.TestResult ... 15
StatlogCharacteristics 15
subset.AlgorithmPerformance 16
TestProcedure ... 17
uci621raw ... 17
warehouse ... 18

Index 20

as.dataset

Dataset abstraction

Description

Dataset abstraction to simplify characterization.

Usage

as.dataset(formula, data, ordered.as.factor = TRUE,
integer.as.numeric = TRUE)

Arguments

formula A symbolic description of the dataset
data The data frame
ordered.as.factor Interpret ordered factors as factors
integer.as.numeric Interpret integer variables as numerics
as.psychobench

Value

A proto object with an additional S3 class dataset

See Also

Other dataset.characterization: StatlogCharacteristics; characterize; plot.DatasetCharacterization

Examples

data("iris")
 ds <- as.dataset(Species ~ ., iris)
 ds

 str(ds$response())
 str(ds$dataparts(c("input", "numeric")))

as.psychobench Coerce benchmark experiment warehouse to preference table

Description

Coerce benchmark experiment warehouse to preference table

Usage

as.psychobench(x, comparisons = TRUE)

Arguments

x A warehouse object
comparisons Return preference or performance table

Value

Data.frame with preference or performance table
as.relation.PaircompDecision

Relations based on pairwise comparisons

Description

Infer a *relation* based on pairwise decisions.

Usage

```r
## S3 method for class 'PaircompDecision'
as.relation(x, verbose = FALSE, ...)
```

```r
relation_is_strict_weak_order(x)
```

Arguments

- `x` A *PaircompDecision* object
- `verbose` Show information during execution
- `...` Ignored

Value

A *relation* object

as.warehouse.mlr.bench.result

Coerce objects to benchmark experiment warehouse

Description

Coerce objects to benchmark experiment warehouse

Usage

```r
as.warehouse.mlr.bench.result(x, ...)
```

```r
as.warehouse.array4dim(x, ...)
```

Arguments

- `x` An object to coerce
- `...` Ignored
benchmark

Details

`as.warehouse.mlbench.result`: Coerces a `bench.result` object from package `mlr` to a `warehouse` object.

`as.warehouse.array4dim`: Coerces a four dimensional array (1st: sampling, 2nd: algorithms, 3rd: performance measures, 4th: datasets) to a `warehouse` object.

Value

A `warehouse` object

benchmark
Benchmark experiment setup and execution

Description

Function to execute benchmark experiments and to collect all data the package can analyze. For more sophisticated benchmark experiments we suggest the usage of the `mlr` package.

Usage

```r
benchmark(datasets, sampling, algorithms = NULL, performances = NULL, characteristics = NULL, test = NULL, test.burnin = 3, verbose = TRUE)
```

Arguments

- `datasets`: List of data.frames
- `sampling`: Sampling function, see `benchmark-sampling`.
- `algorithms`: List of algorithms; i.e., functions which take a model formula and a data.frame to fit a model. Note that a `predict` function must be defined as well.
- `performances`: List of performance measure functions; i.e., functions with arguments `yhat` and `y`. See, e.g., `benchmark-comptime`.
- `characteristics`: DatasetCharacteristics object; e.g., `StatlogCharacteristics`
- `test`: TestProcedure object
- `test.burnin`: Number of burn-in replications
- `verbose`: Show information during execution

Value

A `warehouse` object

See Also

`warehouse, as.warehouse, benchmark-sampling, benchmark-comptime`
Bench\textit{mark experiment plot}

\textbf{Description}

The benchmark experiment plot visualizes each benchmark experiment run. The x-axis is a podium with as many places as algorithms. For each benchmark run, the algorithms are sorted according to their performance values and a dot is drawn on the corresponding place. To visualize the count of an algorithm on a specific position, a bar plot is shown for each of podium places.

\textbf{Usage}

\begin{verbatim}
beplot0(x, ...)

S3 method for class 'AlgorithmPerformance'
beplot0(x, xlab = NULL, ylab = NULL,
 lines.show = FALSE, lines.alpha = 0.2, lines.lwd = 1, lines.col = col,
 dots.pch = 19, dots.cex = 1, places.lty = 2, places.col = 1,
 legendfn = function(algs, cols) { legend("topleft", algs, lwd = 1, col = cols, bg = "white") }, ...)

S3 method for class 'matrix'
beplot0(x, col = 1:ncol(x), xlab = NULL, ylab = NULL,
 lines.show = FALSE, lines.alpha = 0.2, lines.lwd = 1, lines.col = col,
 dots.pch = 19, dots.cex = 1, places.lty = 2, places.col = 1,
 legendfn = function(algs, cols) { legend("topleft", algs, lwd = 1, col = cols, bg = "white") }, ...)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
\item \texttt{x} \hspace{1cm} A matrix or \textit{AlgorithmPerformance} object
\item \texttt{xlab} \hspace{1cm} A title for the x axis
\item \texttt{ylab} \hspace{1cm} A title for the y axis
\item \texttt{lines.show} \hspace{1cm} Connect dots of same benchmark runs
\item \texttt{lines.col} \hspace{1cm} Line color
\item \texttt{lines.alpha} \hspace{1cm} Alpha value of the line color
\item \texttt{lines.lwd} \hspace{1cm} Line width
\item \texttt{dots.pch} \hspace{1cm} Dot symbol
\item \texttt{dots.cex} \hspace{1cm} Dot symbol expansion
\item \texttt{places.lty} \hspace{1cm} Type of separator line between podium places
\item \texttt{places.col} \hspace{1cm} Color of separator line between podium places
\item \texttt{legendfn} \hspace{1cm} Function which draws a legend
\item \texttt{...} \hspace{1cm} Ignored
\item \texttt{col} \hspace{1cm} Colors
\end{itemize}
Value

Return value of underlying beplot0.matrix; currently undefined

References

See Eugster and Leisch (2008) and Eugster et al. (2008) in
citation("benchmark").

See Also

Other algperf.visualization: boxplot.AlgorithmPerformance, densityplot.densityplot.AlgorithmPerformance, stripchart.AlgorithmPerformance; bsgraph0, bsgraph0.dist, bsgraph0.graphNEL; bplot0, bsplot0, matrix, bsplot0.relation_ensemble

boxplot.AlgorithmPerformance

Common visualizations of algorithm performances

Description

Common visualizations of algorithm performances

Usage

```r
## S3 method for class 'AlgorithmPerformance'
boxplot(x, order.by = median,
        order.performance = 1, dependence.show = c("outliers", "all", "none"),
        dependence.col = alpha("black", 0.1), ...)

densityplot(x, ...)

## S3 method for class 'AlgorithmPerformance'
densityplot(x, ...)

## S3 method for class 'AlgorithmPerformance'
stripchart(x, order.by = median,
            order.performance = 1, dependence.show = c("none", "all"),
            dependence.col = alpha("black", 0.1), ...)

Arguments

- `x`: An `AlgorithmPerformance` object
- `order.by`: Function like `mean, median, or max` to calculate a display order of the algorithms; or `NULL` for no specific order.
- `order.performance`: Name or index of the reference performance measure to calculate the order.
dependence.show
  Show dependence of observations for all, none or outlier observations.
dependence.col
  Color of the dependence line.
...
  Ignored.

Value

A `ggplot` object.

See Also

Other algperf.visualization: `beplot0`, `beplot0.AlgorithmPerformance`, `beplot0.matrix`, `bsgraph0`, `bsgraph0.dist`, `bsgraph0.graphNEL`, `bsplot0`, `bsplot0.matrix`, `bsplot0.relation_ensemble`

---

bs.sampling

### Sampling functions

**Description**

Functions to create a set of learning and test samples using a specific resampling method.

**Usage**

```r
bs.sampling(B)
sub.sampling(B, psize)
cv.sampling(k)
```

**Arguments**

- `B` Number of learning samples
- `psize` Size of subsample
- `k` Number of cross-validation samples

**Value**

List with corresponding learning and test samples

**See Also**

`benchmark`
Description

The benchmark summary plot takes the individual benchmark experiment results into account. The y-axis represents the data sets, the x-axis a podium with as many places as candidate algorithms.

Usage

bsgraph0(x, ...)

## S3 method for class 'dist'
bsgraph0(x, ndists.show = length(sort(unique(x))),
    edge.col = gray(0.7), edge.lwd = 1, node.fill = NULL, ...)

## S3 method for class 'graphNEL'
bsgraph0(x, layoutType = "neato", ...)

Arguments

x A dist or graphNEL-class object

ndists.show The number of distance levels to show

data The color of edges (one or one for each distance level)

edge.x The line width of edges (one or one for each distance level)

data The colors of nodes

... Arguments passed to underlying function

layoutType Defines the layout engine

Value

The return value of bsgraph0.graphNEL

See Also

Other algperf.visualization: beplot0, beplot0.AlgorithmPerformance, beplot0.matrix; boxplot.AlgorithmPerformance, densityplot, densityplot.AlgorithmPerformance, stripchart.AlgorithmPerformance; bsplot0, bsplot0.matrix, bsplot0.relation_ensemble
**bsplot**  
*Benchmark experiment summary plot.*

**Description**

The benchmark summary plot takes the individual benchmark experiment results into account. The y-axis represents the data sets, the x-axis a podium with as many places as candidate algorithms.

**Usage**

```r
bsplot0(x, ...)
```

```r
S3 method for class 'relation_ensemble'
bsplot0(x, stat = NULL, ds.order = NULL,
 alg.order = NULL, ...)

S3 method for class 'matrix'
bsplot0(x, stat = NULL, col = structure(seq_len(nrow(x)) +
 1, names = rownames(x)), ylab = "Datasets", xlab = "Podium",
 sig.lwd = 4, stat.col = NULL, ylab.las = NULL, ...)
```

**Arguments**

- `x`  
  A `relation_ensemble` or matrix object

- `stat`  
  A matrix with statistics to display (rows are the algorithms, columns the data sets)

- `ds.order`  
  Data set order

- `alg.order`  
  Algorithm order

- `...`  
  Arguments passed to underlying function

- `col`  
  Colors of the algorithms

- `xlab`  
  A title for the x axis

- `ylab`  
  A title for the y axis

- `sig.lwd`  
  Line width of the significance separator line

- `stat.col`  
  Colors of the statistics

- `ylab.las`  
  las of the labels of the y axis

**See Also**

Other `algperf.visualization`: `beplot0`, `beplot0.AlgorithmPerformance`, `beplot0.matrix`, `boxplot.AlgorithmPerformance`, `densityplot`, `densityplot.AlgorithmPerformance`, `stripchart.AlgorithmPerformance`, `bsgraph0`, `bsgraph0.dist`, `bsgraph0.graphNEL`
**Description**

Implementation of a map/reduce approach to characterize a dataset with given dataset characteristics.

**Usage**

`characterize(x, y, verbose = FALSE, index = NULL, ...)`

**Arguments**

- `x`: A dataset object
- `y`: A DatasetCharacteristics object; e.g., `StatlogCharacteristics`
- `verbose`: Show information during execution
- `index`: Characterize only a subset
- `...`: Ignored

**Value**

The characterization matrix (1 row and as many columns as characteristics)

**References**

See *Eugster et al. (2010)* in citation("benchmark").

**See Also**

Other dataset.characterization: `StatlogCharacteristics`; `as.dataset: plot.DatasetCharacterization`

**Examples**

```r
data("iris")
ds <- as.dataset(Species ~ ., iris)
characterize(ds, StatlogCharacteristics)
```
## fittime

### Performance measures

**Description**

Dummy functions to enable fitting and prediction time as performance measures.

**Usage**

```r
fittime(yhat, y)
predicttime(yhat, y)
```

**Arguments**

- `yhat` Ignored
- `y` Ignored

**Value**

Time (User and System) used for the model fitting or prediction

**See Also**

- `benchmark`

## ghraw

### Grasshopper domain benchmark experiment results

**Description**

Misclassification error and various other performance measures on the data set a domain of 33 data sets with information if a specific grasshopper species is available in a territory or not. The candidate algorithms are `lda`, `rf`, `knn`, `rpart`, `svm` and `naiveBayes`. `ghrel` are precomputed relations.

Used in `demo("lsbenchplot-gh")`.

**Usage**

```r
ghraw
```

**Format**

A data frame with 99000 observations and 5 variables (`alg`, `samp`, `perf`, `value`, `ds`).
Description

Misclassification error and computation time on the data set monks3 of the candidate algorithms lda, rf, knn, rpart, svm and nnet.
Used in demo("benchplot").

Usage

monks3raw

Format

An array of dimension 250 x 6 x 2 x 1 (sampling x algorithms x performances x data sets).

References


Description

Pairwise comparison of algorithm performances

Usage

paircomp(x, family, type = c("<", ","), ...)

Arguments

x An AlgorithmPerformance object
family A Paircomp object; see details section
type Draw strict or indifference decision
... Ignored

Details

Available TestPaircomp implementations:
FriedmanTestPaircomp  Pairwise comparison based on the non parametric friedman test
LmerTestPaircomp    Pairwise comparison based on a mixed effects model (function lmer in package lme4)
PercintTestPaircomp Pairwise comparison based on the bootstrap percentile intervals

Available PointPaircomp implementations:

GenericPointPaircomp  Pairwise comparison based on point estimates.

Value

A PaircompDecision object; a list with the elements:

- decision  The incidence matrix representing the pairwise comparisons
- type      The decision type
- base      A list with information on the decision base

References

See Eugster and Leisch (2008) and Eugster et al. (2008) in citation("benchmark").

plot.DatasetCharacterization

Visualization of dataset characteristics

Description

Visualization of dataset characteristics

Usage

## S3 method for class 'DatasetCharacterization'
plot(x, y = NULL, lines = TRUE,
     points = TRUE, null.line = TRUE, null.line.col = gray(0.7),
     basis = TRUE, basis.col = NULL, ...)

Arguments

- x             A DatasetCharacterization object
- y             Ignored
- lines         Draw observation dependency lines
- points        Draw observation points
- null.line     Draw null line
- null.line.col Null line color
- basis         Draw basis characterization of the dataset
- basis.col     Color of basis characterization
- ...           Ignored
plot.TestResult

Value

A ggplot object.

See Also

Other dataset.characterization: StatlogCharacteristics; as.dataset; characterize

---

plot.TestResult

Visualization methods for (sequential) test results.

Description

Visualization methods for (sequential) test results.

Usage

## S3 method for class 'TestResult'
plot(x, ...)

Arguments

x

An TestResult object

...

Ignored.

Value

A ggplot object.

---

StatlogCharacteristics

StatLog dataset characteristics

Description

Implementation of the StatLog project dataset characteristics.

Usage

StatlogCharacteristics
subset.AlgorithmPerformance

Format

proto object
  $ requirements: function (., ...)
  $ name : chr "Statlog"
  $ reduce : function (.)
  $ map : function (.)
  parent: proto object

References

See Eugster et al. (2010) in citation("benchmark").


See Also

Other dataset.characterization: as.dataset; characterize; plot.DatasetCharacterization

Description

Return subsets of AlgorithmPerformance objects

Usage

## S3 method for class 'AlgorithmPerformance'
subset(x, subset, ...)

Arguments

x An AlgorithmPerformance object
subset Logical expression indicating rows to keep
... Passed to the underlying subset.data.frame call

Value

An AlgorithmPerformance object with just the selected observations
**TestProcedure**

*Test procedures infrastructure*

**Description**

Test procedures infrastructure

**Usage**

- FriedmanTest
- LmerTest
- PercintTest

**Format**

```
proto object
$ requirements:function (., ...)
$ pairwiseTest:function (., ...)
$ globalTest :function (., ...)
$ new :function (., ...)
```

**Details**

Implemented TestProcedure and corresponding TestResult are:

- FriedmanTest: Test procedure based on the non-parametric Friedman test
- LmerTest: Test procedure based on a mixed effects model (function `lmer` in package `lme4`)
- PercintTest: Test procedure based on the bootstrap percentile intervals

**References**

See Eugster and Leisch (2008) and Eugster et al. (2008) in citation("benchmark").

---

**uci621raw**

*uci621 benchmark experiment results*

**Description**

Misclassification error and computation time on the data set 21 UCI Machine Learning Repository data sets of the candidate algorithms lda, rf, knn, rpart, svm and nnet.

uci621rel are precomputed relations.

Used in demo("lsbenchplot-cs621").

**Usage**

uci621raw
Format

An array of dimension 250 x 6 x 2 x 1 (sampling x algorithms x performances x data sets).

References


warehouse Benchmark experiment warehouse

Description

warehouse is the constructor function for a benchmark experiment warehouse.

Usage

warehouse(datasets, B, algorithms = NULL, performances = NULL, characteristics = NULL, tests = NULL)

Arguments

datasets Names of the datasets
B Number of benchmark runs
algorithms Names of the candidate algorithms
performances Names of the performance measures
characteristics Names of the dataset characteristics
tests Names of the monitored test measures

Details

A benchmark experiment warehouse collects all data during the execution of a benchmark experiment; see benchmark. Different views (based on the collected data) provide cleaned parts of the data for further analyses.

Implemented views:

1. viewAlgorithmPerformance(): returns a data frame (S3 class AlgorithmPerformance) with columns samples, datasets, algorithms, performances (factors with the corresponding levels) and the column value with the corresponding performance value.
2. viewDatasetCharacterization(): returns a data frame (S3 class DatasetCharacterization) with columns samples, datasets, characteristics, value.
3. viewDatasetBasisCharacterization(): returns a data frame (S3 class DatasetBasisCharacterization) with columns datasets, characteristics, value.
4. viewTestResult(): returns a data frame (S3 class TestResult) with columns samples, datasets, tests, value.
warehouse

Value

Proto object with different views (see Details).

See Also

benchmark, as.warehouse
## Index

*Topic **datasets***
- ghraw, 12
- monks3raw, 13
- StatlogCharacteristics, 15
- TestProcedure, 17
- uci621raw, 17

AlgorithmPerformance, 6, 7, 13, 16
AlgorithmPerformance (warehouse), 18
as. dataset, 2, 11, 15, 16
as. psychobench, 3
as. relation.PaircompDecision, 4
as. warehouse, 5, 19
as. warehouse
  (as. warehouse.mlr.bench.result), 4
as. warehouse.mlr.bench.result, 4

benchmark, 5, 8, 12, 18, 19
benchmark-comptime (fittime), 12
benchmark-sampling (bs.sampling), 8
beplot0, 6, 8–10
beplot0.AlgorithmPerformance, 8–10
beplot0.matrix, 8–10
boxplot.AlgorithmPerformance, 7, 7, 9, 10
bs.sampling, 8
bsgraph0, 7, 8, 9, 10
bsgraph0.dist, 7, 8, 10
bsgraph0.graphNEL, 7–10
bsplot0, 7–9, 10
bsplot0.matrix, 7–9
bsplot0.relation_ensemble, 7–9

categorize, 3, 11, 15, 16

cv. sampling (bs.sampling), 8
dataset, 11
datasetBasicsCharacterization
  (warehouse), 18
datasetCharacterization, 14

densityplot, 7, 9, 10
densityplot
  (boxplot.AlgorithmPerformance), 7
densityplot.AlgorithmPerformance, 7, 9, 10
dist, 9
fittime, 12

FriedmanTest (TestProcedure), 17
FriedmanTestPaircomp (paircomp), 13

GenericPointPaircomp (paircomp), 13
ggplot, 8, 15
ghraw, 12
ghrel (ghraw), 12

LmerTest (TestProcedure), 17
LmerTestPaircomp (paircomp), 13

max, 7
mean, 7
median, 7
monks3raw, 13

paircomp, 13
PaircompDecision, 4
PaircompDecision (paircomp), 13
PercintTest (TestProcedure), 17
PercintTestPaircomp (paircomp), 13
plot.DatasetCharacterization, 3, 11, 14, 16
plot.TestResult, 15
PointPaircomp (paircomp), 13
predict, 5
predicttime (fittime), 12

relation, 4
relation_ensemble, 10
relation_is_strict_weak_order
   (as.relation.PaircompDecision), 4
StatlogCharacteristics, 3, 5, 11, 15
stripchart.AlgorithmPerformance, 7, 9, 10
stripchart.AlgorithmPerformance
   (boxplot.AlgorithmPerformance), 7
sub.sampling (bs.sampling), 8
subset.AlgorithmPerformance, 16
subset.data.frame, 16

TestPaircomp(paircomp), 13
TestProcedure, 5, 17
TestResult, 15
TestResult (warehouse), 18
uci621raw, 17
uci621rel (uci621raw), 17

warehouse, 3, 5, 18