Package ‘bayesmix’

July 1, 2015

Version 0.7-4
Date 2015-07-01
Title Bayesian Mixture Models with JAGS
Depends R (>= 2.10),
Imports graphics, stats, methods, rjags (>= 2.1.0), coda (>= 0.13)
Description The fitting of finite mixture models of univariate
 Gaussian distributions using JAGS within a Bayesian
 framework is provided.
URL http://ifas.jku.at/gruen/BayesMix
License GPL (>= 2)
NeedsCompilation no
Author Bettina Gruen [aut, cre],
 Martyn Plummer [ctb]
Maintainer Bettina Gruen <Bettina.Gruen@jku.at>
Repository CRAN
Date/Publication 2015-07-01 14:59:17

R topics documented:

BMMdiag ... 2
BMMmodel ... 3
BMMposteriori .. 4
BMMpriors ... 5
darwin .. 6
fish .. 7
initsFS ... 7
JAGScall ... 8
JAGScontrol .. 9
JAGSrun .. 10
plot.BMMposteriori .. 11
plot.jags .. 12
Description

Two different plots are currently provided: a plot of different variables against each other and a plot of the same variable against its values in the other classes.

Usage

\[
\text{BMMDiag}(\text{object, which = 1:2, variables, ask = interactive(), fct1, fct2, xlim, ylim, auto.layout = TRUE, caption = NULL, main = "", ...})
\]

Arguments

- **object**: a jags object with model of class \texttt{BMMmodel}.
- **which**: if only one of the plots is required, specify its number.
- **variables**: if variables is missing, the names are taken from the jags object.
- **ask**: prompt user before each page of plots
- **fct1**: string: name of transformation function for variable on x-axis.
- **fct2**: string: name of transformation function for variable on y-axis.
- **xlim**: if no range for xlim is specified, a sensible range is taken.
- **ylim**: if no range for ylim is specified, a sensible range is taken.
- **auto.layout**: logical: if TRUE puts each of the two different plots on one figure.
- **caption**: captions to appear above the plots.
- **main**: title to each plot (in addition to the above 'caption').
- **...**: further graphical parameters (see 'plot.xy' and 'par') may also be supplied as arguments.

Details

The plots help determining which variable will induce a unique labelling when taken for ordering of the segments and indicate if the model is overfitted by specifying too many segments.

Author(s)

Bettina Gruen
BMMmodel

Creates bugs model.

Description

Creates the BUGS-model specification and returns the values for the initialization, the prior specification, and the observations.

Usage

```r
BMMmodel(y, k, priors, inits = "initsFS", aprioriWeights = 1,
  no.empty.classes = FALSE, restrict = "none", ...)
```

Arguments

- `y` a numeric vector.
- `k` integer indicating the number of segments.
- `priors` specification of priors by a named list or a `BMMpriors` object.
- `inits` specification of initial values by a named list or string indicating the function to be called.
- `aprioriWeights` specification of prior of the a-priori weights. If `aprioriWeights` does not have length = `k`, there is an equal prior for the a-priori weights assumed.
- `no.empty.classes` logical: should it be prevented that empty classes arise during sampling.
- `restrict` one of "none", "mu", "tau".
- `...` further parameters for the function specified in `inits`.

Details

By default the function `initsFS` is called for generating initial values. Any other function specified by `inits` is assumed to have at least `x`, `k` and `restrict` as input parameters.

The parameter `restrict` indicates if a location-shift model ("tau"), a scale contaminated model ("mu") or a model where both variables vary over components shall be fitted.

If the logical `no.empty.classes` is `TRUE` there are observations added to the model that the classes are not empty. This signifies that the likelihood when sampling the class affiliations is changed such that any data point which is sampled and is the last one in its class stays there.

Value

If `y` is specified an object of class `BMMmodel` is returned with components:

- `inits` named list.
- `data` named list.
- `bugs` text for .bug-file with prefix missing.
If \(y \) is missing an object of class \(\text{bmmsetup} \) is returned containing the parameter specifications. When \(\text{JAGScall} \) is called with this object as model argument, \(\text{bmmmodel} \) is called with \(y \) and the other parameters as input arguments before calling JAGS.

Author(s)

Bettina Gruen

See Also

\(\text{JAGSrun}, \text{initsFS} \)

Examples

data(“fish”, package = “bayesmix”)
model <- \text{BMMmodel}(fish, k = 4, priors = list(kind = “independence”,
parameter = “priorFish”, hierarchical = “tau”),
initialValues = list(S0 = 2))
model

\begin{verbatim}
BMMposteriori

Plots a posteriori probabilities of data points
\end{verbatim}

Description

Given a \text{jags} object with model of class \text{bmmmodel} the a posteriori probabilities are determined. If \text{plot}=\text{TRUE}, the resulting object of class \text{BMMposteriori} is plotted.

Usage

\text{BMMposteriori}(object, class, caption = \text{NULL}, plot = \text{TRUE},
auto.layout = \text{TRUE}, …)

Arguments

\begin{itemize}
\item \text{object} a \text{jags} object with model of class \text{BMMmodel}.
\item \text{class} a vector of integers indicating for which classes the posterior probabilities shall be plotted. The default is all.
\item \text{caption} captions to appear above the plots.
\item \text{plot} logical indicating if a plot shall be made.
\item \text{auto.layout} logical: if \text{TRUE} puts all classes in the posterior probabilities plot on the same figure.
\item … further graphical parameters may also be supplied as arguments.
\end{itemize}

Details

Given a \text{jags} object with model of class \text{BMMmodel} the a posteriori probabilities are calculated for the unique data points with respect to the components specified by \text{class}.
There is an object `bmmPriors` returned with components

- `name`: vector indicating which kind of prior is specified and if it is an hierarchical prior and if appropriate with respect to which variable.
- `var`: list of variables in the prior and their specified values.
Author(s)

Bettina Gruen

Examples

data("fish", package = "bayesmix")
priors <- B@mpriors(y = fish)

darwin Differences in heights between plants

Description

A numeric vector containing 15 observations of differences in heights between pairs of self-fertilized and cross-fertilized plants grown in the same condition.

Usage

data(darwin)

Format

A numeric vector of length 15.

Details

Darwin's data set contains two extremely small values. Therefore, this data set can be used for outlier modelling.

Source

Examples

data("darwin", package = "bayesmix")
Estimated sample density
plot(density(darwin[[1]]), ylim = c(0, 0.02), main = "Outlier modelling")
ss <- seq(-100, 100, by = 1)
Normal density with estimated mean and sd of whole sample
lines(ss, dnorm(ss, mean = mean(darwin[[1]]), sd = sd(darwin[[1]])), col = "red")
Normal density with estimated mean and sd of sample, where the 2
extremely small values are removed
lines(ss, dnorm(ss, mean = mean(darwin[-c(1:2),1]),
 sd = sd(darwin[-c(1:2),1])), col = "green")
fish
Fish length data

Description
A numeric vector containing 256 observations of fish lengths.

Usage
```r  
data(fish)  
```

Format
A numeric vector of length 256.

Details
This data set can be used for modeling unobserved heterogeneity, as it can be assumed that underlying categories present in the data are the age groups to which the fish belong.

Source

Examples
```r  
data("fish", package = "bayesmix")  
ss <- seq(-3, 13, by = 0.01)  
hist(fish[[1]], 20, freq = FALSE, main = "Fish data")  
lines(ss, dnorm(ss, mean(fish[[1]]), sd(fish[[1]])), col = "red")  
```

initsFS
create initial values

Description
Initial values for nodes are created after the suggestion in Sylvia Fruehwirth-Schnatter's book.

Usage
```r  
initsFS(x, k, restrict, initialValues = list())  
```
Arguments

- x: a numeric vector.
- k: number of segments.
- initialValues: additional initial values specifications.
- restrict: one of "none", "mu", "tau".

Details

The initial values for μ are determined by the quantiles of the data, those for η give equal weight on each segment and those for τ are equal for all segments and estimated by the inverse of the IQR of the data divided by 1.34 and squared.

Value

A list with initial values for the parameter indicated by the name of the respective list element is returned.

Author(s)

Bettina Gruen

Description

Using functionality from package rjags the JAGS model is created and posterior draws are sampled.

Usage

`JAGScall(model, y, prefix, control, ...)`

Arguments

- model: JAGSmodel object or output from BMMmodel.
- y: a numeric vector.
- control: named list or JAGScontrol object.
- ... additional parameters handed over to BMMmodel.

Value

Returns a "jags" object.
Description

The information on the number of burn-in draws and monitored draws is specified. Furthermore, it includes the information which variables shall be monitored and possibly a seed and a random number generator (RNG).

Usage

```r
JAGScontrol(variables, n.iter = 1000, thin = 1, burn.in = 0, seed, 
rng = c("base::Wichmann-Hill", 
          "base::Marsaglia-Multicarry", 
          "base::Super-Duper", 
          "base::Mersenne-Twister"))
```

Arguments

- `variables` names of variables which shall be monitored.
- `n.iter` number of monitored draws.
- `thin` thinning interval.
- `burn.in` number of discarded burn-in draws.
- `seed` integer setting the seed for the RNG.
- `rng` specification of RNG.

Value

An object of class `JAGScontrol` is returned which is a list containing the specified information.

Author(s)

Bettina Gruen

See Also

`JAGSrun`
Examples

control <- JAGScontrol(variables = "mu")
control

Description

Calls jags for MCMC sampling.

Usage

JAGSrun(y, prefix = yname, model = BMMmodel(k = 2),
control = JAGScontrol(variables = c("mu", "tau", "eta")),
tmp = TRUE, cleanup = TRUE, ...)

Arguments

y a numeric vector.
prefix character: prefix for .bug-file.
model object of class JAGSmodel or output from BMMmodel.
control specification of control by a JAGScontrol object.
tmp logical: shall the files be written in a temporary directory.
cleanup logical: shall the created files be removed.
yname a character string with the actual y argument name.
... further parameters handed over to BMMmodel where it is used for the function
specifying the initial values, e.g., initsFS.

Details

This function is a wrapper calling JAGScall.

Value

Returns a jags object with components

call the matched call.
results results read in from “jags.out” if run was successful or from “jags.dump” if an
error occurred.
model a JAGSmodel object.
variables vector containing the names of the monitored variables.
data a numeric vector.
Author(s)
Bettina Gruen

See Also
JAGScall, BMMmodel, initsFS

Examples

data("fish", package = "bayesmix")
prefix <- "fish"
variables <- c("mu", "tau", "eta")
k <- 3
modelFish <- BMMmodel(k = k, priors = list(kind = "independence",
parameter = "priorsFish", hierarchical = "tau"))
controlFish <- JAGScontrol(variables = c(variables, "S"), n.iter = 100)
z1 <- JAGSrun(fish, prefix, model = modelFish, initialValues = list(S0 = 2),
control = controlFish, cleanup = TRUE, tmp = FALSE)
zsSort <- Sort(z1, "mu")
BMMposteriori(zsSort)

data("darwin", package = "bayesmix")
prefix <- "darwin"
k <- 2
modelDarwin <- BMMmodel(k = k, priors = list(kind = "independence",
parameter = "priorsUncertain"),
aprioriWeights = c(1, 15),
no.empty.classes = TRUE, restrict = "tau")
z2 <- JAGSrun(darwin, prefix, model = modelDarwin, control =
JAGScontrol(variables = variables, n.iter = 3000,
burn.in = 1000), cleanup = TRUE, tmp = FALSE)
plot(z2, variables = "mu")

plot.BMMposteriori
Plots a posteriori probabilities of data points

Description
Plot method for object of class BMMposteriori, typically called by BMMposteriori.

Usage
S3 method for class 'BMMposteriori'
plot(x, caption, main = "", ...)
plot.jags

Arguments

- **x**: a BMMposteriori object.
- **caption**: captions to appear above the plots.
- **main**: title to each plot—in addition to the above caption.
- **...**: further graphical parameters may also be supplied as arguments.

Details

This function is called by BMMposteriori if plot = TRUE.

Author(s)

Bettina Gruen

See Also

- BMMposteriori

plot.jags

Plot jags Object

Description

Plots mcmc chains of a jags object.

Usage

```r
## S3 method for class 'jags'
plot(x, variables = NULL, trace = TRUE, density = TRUE, smooth = TRUE, bwf, num, xlim, auto.layout = TRUE, ask = interactive(), ...)
```

Arguments

- **x**: a jags object.
- **variables**: names of variables which shall be plotted. Default are all names of results except those with a column dimension larger than the number of classes k.
- **trace**: plot trace of each variable.
- **density**: plot density estimate of each variable.
- **smooth**: draw a smooth line through trace plots.
- **bwf**: bandwidth function for density plots.
- **num**: if not all classes of a variable shall be plotted, a subset can be specified.
- **xlim**: if not specified, the range of each variable over all classes is taken as default.
- **auto.layout**: automatically generate output format.
- **ask**: prompt user before each page of plots.
- **...**: further arguments for densityplot.
priors

Details
Adapted from plot.mcmc.
Currently only implemented for jags objects with model of class BMMmodel. Otherwise the default
plot method for the results of the jags object is called (plot.mcmc).

Author(s)
Bettina Gruen

See Also
plot.mcmc, BMMdiag, BMMposteriori

priors

Creates list of prior specifications

Description
Given the data values for the priors are determined.

Usage
priorsFish(y, eps = 10^-16)
priorsRaftery(y)
priorsUncertain(y, eps = 10^-16)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>eps</td>
<td>a numeric value indicating the smallest value for flat priors.</td>
</tr>
</tbody>
</table>

Details
Values for the prior parameter b0, B0, nu0 and S0 are determined.

Value
There is a list returned with named components of the prior parameters.

Author(s)
Bettina Gruen
randomPermutation

Randomly permute segments for MCMC draws

Description
Random permutation of segment labels for each draw in order to get a better estimate of the unrestricted likelihood.

Usage
randomPermutation(x)

Arguments
x a jags object with model of class `bmmmodel`.

Details
The draws are permuted with respect to the different classes k.

Value
The input object with permuted results for each draw is returned.

Warning
Any variables where there are neither k different chains nor only one chain observed are dropped.

Author(s)
Bettina Gruen

Sort

Sorts MCMC chains according to certain variables

Description
Ascending sorting of results of jags object with model of class `bmmmodel` with respect to a given variable.

Usage
Sort(x, by = NULL)
Sort

Arguments

- x: a `jags` object with model of class `BMMmodel`.
- by: variable name according to which the segments shall be ordered.

Details

If by is not specified, the first variable in the corresponding vector of the `jags` object is taken.

Value

The input object with results sorted in ascending order according to the variable given in by is returned.

Warning

If there arise problems, the original object is returned with a warning.

Author(s)

Bettina Gruen
Index

*Topic **datasets**
 darwin, 6
 fish, 7

*Topic **hplot**
 BMMDiag, 2
 BMMPrior, 4
 plot.BMMPrior, 11
 plot.jags, 12

*Topic **utilities**
 BMModel, 3
 BMMPrior, 5
 initsFS, 7
 JAGScall, 8
 JAGScontrol, 9
 JAGSrun, 10
 Priors, 13
 randomPermutation, 14
 Sort, 14

BMMDiag, 2, 13
BMModel, 3, 11
BMMPrior, 4, 12, 13
BMMPrior, 5

darwin, 6

fish, 7

initsFS, 4, 7, 11

jags (JAGSrun), 10
JAGScall, 8, 11
JAGScontrol, 9
JAGSrun, 4, 9, 10

plot.BMMPrior, 5, 11
plot.jags, 12
plot.mcMcmc, 13
print.jags (JAGSrun), 10
print.JAGSmodel (BMModel), 3
Priors, 13

priorsFish (Priors), 13
priorsRaftery (Priors), 13
priorsUncertain (Priors), 13

randomPermutation, 14
Sort, 14