Package ‘SPOT’

May 14, 2018

License GPL (>= 2)

Title Sequential Parameter Optimization Toolbox

Type Package

LazyLoad yes

LazyData true

Description A set of tools for model based optimization and tuning of algorithms. It includes surrogate models, optimizers and design of experiment approaches. The main interface is spot, which uses sequentially updated surrogate models for the purpose of efficient optimization. The main goal is to ease the burden of objective function evaluations, when a single evaluation requires a significant amount of resources.

Version 2.0.3

Date 2018-05-14

Depends R (>= 3.0.0)

Imports randomForest, stats, utils, graphics, grDevices, MASS, DEoptim, rgenoud, plotly, rsm, nloptr

RoxygenNote 6.0.1

Suggests testthat

NeedsCompilation no

Author Thomas Bartz-Beielstein [aut], Joerg Stork [aut], Martin Zaefferer [aut, cre], Margarita Rebolledo [ctb], Christian Lasarczyk [ctb], Joerg Ziegenhirt [ctb], Wolfgang Konen [ctb], Oliver Flasch [ctb], Patrick Koch [ctb], Martina Friese [ctb], Lorenzo Gentile [ctb], Frederik Rehbach [ctb]

Maintainer Martin Zaefferer <martin.zaefferer@gmx.de>
Repository CRAN
Date/Publication 2018-05-14 14:26:46 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPOT-package</td>
<td>2</td>
</tr>
<tr>
<td>buildEnsembleStack</td>
<td>4</td>
</tr>
<tr>
<td>buildKriging</td>
<td>5</td>
</tr>
<tr>
<td>buildKrigingDACE</td>
<td>8</td>
</tr>
<tr>
<td>buildLM</td>
<td>9</td>
</tr>
<tr>
<td>buildLOESS</td>
<td>10</td>
</tr>
<tr>
<td>buildRandomForest</td>
<td>11</td>
</tr>
<tr>
<td>buildRSM</td>
<td>12</td>
</tr>
<tr>
<td>dataGasSensor</td>
<td>13</td>
</tr>
<tr>
<td>descentSpotRSM</td>
<td>15</td>
</tr>
<tr>
<td>designLHD</td>
<td>15</td>
</tr>
<tr>
<td>designUniformRandom</td>
<td>17</td>
</tr>
<tr>
<td>expectedImprovement</td>
<td>18</td>
</tr>
<tr>
<td>funCyclone</td>
<td>18</td>
</tr>
<tr>
<td>funSphere</td>
<td>20</td>
</tr>
<tr>
<td>optimDE</td>
<td>20</td>
</tr>
<tr>
<td>optimES</td>
<td>21</td>
</tr>
<tr>
<td>optimGenoud</td>
<td>23</td>
</tr>
<tr>
<td>optimLBFGSB</td>
<td>24</td>
</tr>
<tr>
<td>optimLHD</td>
<td>25</td>
</tr>
<tr>
<td>optimNLOPTR</td>
<td>26</td>
</tr>
<tr>
<td>plotData</td>
<td>27</td>
</tr>
<tr>
<td>plotFunction</td>
<td>28</td>
</tr>
<tr>
<td>plotModel</td>
<td>30</td>
</tr>
<tr>
<td>repeatsOCBA</td>
<td>31</td>
</tr>
<tr>
<td>spot</td>
<td>32</td>
</tr>
<tr>
<td>spotAlgEs</td>
<td>34</td>
</tr>
<tr>
<td>spotLoop</td>
<td>36</td>
</tr>
<tr>
<td>wrapFunction</td>
<td>37</td>
</tr>
</tbody>
</table>

Index 39

SPOT-package

Sequential Parameter Optimization Toolbox

Description

Sequential Parameter Optimization Toolbox
Details

SPOT uses a combination statistic models and optimization algorithms for the purpose of parameter optimization. Design of Experiment methods are employed to generate an initial set of candidate solutions, which are evaluated with a user-provided objective function. The resulting data is used to fit a model, which in turn is subject to an optimization algorithm, to find the most promising candidate solution(s). These are again evaluated, after which the model is updated with the new results. This sequential procedure of modeling, optimization and evaluation is iterated until the evaluation budget is exhausted.

Note, that versions >= 2.0.1 of the package are a complete rewrite of the interfaces and conventions in SPOT. The rewritten SPOT package aims to improve the following issues of the older package:
- A more modular architecture is provided, that allows the user to easily customize parts of the SPO procedure.
- Core functions for modeling and optimization use interfaces more similar to algorithms from other packages / core-R, hence making them easier accessible for new users. Also, these can now be more easily used separately from the main SPO approach, e.g., only for modeling.
- Reducing the unnecessarily large number of choices and parameters.
- Removal of extremely rarely used / un-used features, to reduce overall complexity of the package.
- Improving documentation and accessibility in general.
- Speed-up of frequently used procedures.

We appreciate feedback about any bugs or other issues with the package. Feel free to send feedback by mail to the maintainer.

Package: SPOT
Type: Package
Version: 2.0.3
Date: 2018-05-14
License: GPL (>= 2)
LazyLoad: yes

Acknowledgments

This work has been partially supported by the Federal Ministry of Education and Research (BMBF) under the grants CIMO (FKZ 17002X11) and MCIOP (FKZ 17N0311).

Maintainer

Martin Zaefferer <martin.zaefferer@gmx.de>

Author(s)

Thomas Bartz-Beielstein <thomas.bartz-beielstein@th-koeln.de>, Joerg Stork, Martin Zaefferer (Maintainer, <martin.zaefferer@gmx.de>) with contributions from: C. Lasarczyk, M. Rebolledo, J. Ziegenhirt, W. Konen, O. Flasch, P. Koch, M. Friese, L. Gentile, F. Rehbach.

See Also

Main interface function is spot.
buildEnsembleStack

Ensemble: Stacking

Description

Generates an ensemble of surrogate models with stacking (stacked generalization).

Usage

`buildEnsembleStack(x, y, control = list())`

Arguments

- **x**: design matrix (sample locations), rows for each sample, columns for each variable.
- **y**: vector of observations at x.
- **control**: (list), with the options for the model building procedure:
 - `modelL1`: Function for fitting the L1 model (default: `buildLM`) which combines the results of the L0 models.
 - `modelL1.control`: List of control parameters for the L1 model (default: `list()`).
 - `modelL0`: A list of functions for fitting the L0 models (default: `list(buildLM, buildRandomForest, buildKriging)`).
 - `modelL0.control`: List of control lists for each L0 model (default: `list(list(), list(), list())`).

Value

returns an object of class `ensembleStack`.

Note

Loosely based on the code by Emanuele Olivetti https://github.com/emanuele/kaggle_pbr/blob/master/blend.py

References

See Also

`predict.ensembleStack`
Examples

```r
## Create a test function: branin
braninFunction <- function (x) {
  10 * (1 - 1/(8*pi)) * cos(x[1]) + 10
}
## Create design points
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points
y <- as.matrix(apply(x,1,braninFunction))
## Create model with default settings
fit <- buildEnsembleStack(x,y)
## Predict new point
predict(fit,cbind(1,2))
## True value at location
braninFunction(c(1,2))
```

Description

This function builds a Kriging model based on code by Forrester et al.. By default exponents (p) are fixed at a value of two, and a nugget (or regularization constant) is used. To correct the uncertainty estimates in case of nugget, re-interpolation is also by default turned on.

Usage

```r
buildKriging(x, y, control = list())
```

Arguments

- **x**: design matrix (sample locations)
- **y**: vector of observations at x
- **control**: (list), with the options for the model building procedure:
 - `types`: a character vector giving the data type of each variable. All but "factor" will be handled as numeric, "factor" (categorical) variables will be subject to the hamming distance.
 - `thetaLower`: lower boundary for theta, default is `1e-4`
 - `thetaUpper`: upper boundary for theta, default is `1e2`
 - `algTheta`: algorithm used to find theta, default is `optimLBFGSB`
 - `budgetAlgTheta`: budget for the above mentioned algorithm, default is `200`. The value will be multiplied with the length of the model parameter vector to be optimized.
 - `optimizeP`: boolean that specifies whether the exponents (p) should be optimized. Else they will be set to two. Default is `FALSE`
use Lambda whether or not to use the regularization constant lambda (nugget effect). Default is TRUE.
lambdaLower lower boundary for log10lambda, default is -6
lambdaUpper upper boundary for log10lambda, default is 0
startTheta optional start value for theta optimization, default is NULL
reinterpolate whether (TRUE, default) or not (FALSE) reinterpolation should be performed target target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation, "ei" for expected improvement. See also predict.kriging. This can also be changed after the model has been built, by manipulating the respective object$target value.

Details

The model uses a Gaussian kernel: \(k(x, z) = \exp(-\sum(\text{theta}_i * |x_i - z_i|^p_i)) \). By default, \(p_i = 2 \). Note that if dimension \(x_i \) is a factor variable (see parameter types), Hamming distance will be used instead of \(|x_i - z_i| \).

Value

an object of class kriging. Basically a list, with the options and found parameters for the model which has to be passed to the predictor function:
- x sample locations (scaled to values between 0 and 1)
- y observations at sample locations (see parameters)
- thetaLower lower boundary for theta (see parameters)
- thetaUpper upper boundary for theta (see parameters)
- algTheta algorithm to find theta (see parameters)
- budgetAlgTheta budget for the above mentioned algorithm (see parameters)
- optimizeP boolean that specifies whether the exponents (p) were optimized (see parameters)
- normalizeYmin minimum in normalized space
- normalizeYmax maximum in normalized space
- normalizeXmin minimum in input space
- normalizeXmax maximum in input space
- dmodelTheta vector of activity parameters
- Theta log_10 vector of activity parameters (i.e. log10(dmodelTheta))
- dmodelLambda regularization constant (nugget)
- Lambda log_10 of regularization constant (nugget) (i.e. log10(dmodelLambda))
- yonemu Ay-ones*mu
- ssq sigma square
- mu mean mu
- Psi matrix large Psi
- Psinv inverse of Psi
- nevals number of Likelihood evaluations during MLE

References

See Also

predict.kriging

Examples

```R
## Test-function:
braninFunction <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
}

## Create design points
set.seed(1)
x <- cbind(runif(n=20)*15-5,runif(n=20)*15)

## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,braninFunction))

## Create model with default settings
fit <- buildKriging(x,y,control = list(algTheta=optimLHD))

## Print model parameters
print(fit)

## Predict at new location
predict(fit,cbind(1,2))

## True value at location
braninFunction(cbind(1,2))

## Next Example: Handling factor variables

## create a test function:
braninFunctionFactor <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
  if(x[3]==1)
    y <- y +1
  else if(x[3]==2)
    y <- y -1
  y
}

## create training data
set.seed(1)
x <- cbind(runif(n=50)*15-5,runif(n=50)*15,sample(1:3,50,replace=TRUE))
y <- as.matrix(apply(x,1,braninFunctionFactor))

## fit the model (default: assume all variables are numeric)
fitDefault <- buildKriging(x,y,control = list(algTheta=optimLBFGSB))

## fit the model (give information about the factor variable)
fitFactor <- buildKriging(x,y,control =
  list(algTheta=optimLBFGSB,types=c("numeric","numeric","factor")))

## create test data
xtest <- cbind(runif(n=200)*15-5,runif(n=200)*15,sample(1:3,200,replace=TRUE))
ytest <- as.matrix(apply(xtest,1,braninFunctionFactor))

## Predict test data with both models, and compute error
ypredDef <- predict(fitDefault,xtest)
ypredFact <- predict(fitFactor,xtest)
mean((ypredDef-ytest)^2)
```
Description

This Kriging meta model is based on DACE (Design and Analysis of Computer Experiments). It allows to choose different regression and correlation models. The optimization of model parameters is by default done with a bounded simplex method from the nloptr package.

Usage

buildKrigingDACE(x, y, control = list())

Arguments

x design matrix (sample locations), rows for each sample, columns for each variable.
y vector of observations at x
control (list), with the options for the model building procedure:
 startTheta optional start value for theta optimization, default is NULL
 algTheta algorithm used to find theta, default is optimLBFGSB.
 budgetAlgTheta budget for the above mentioned algorithm, default is 200. The value will be multiplied with the length of the model parameter vector to be optimized.
 nugget Value for nugget. Default is -1, which means the nugget will be optimized during MLE. Else it can be fixed in a range between 0 and 1.
 regr Regression function to be used: regpoly0 (default), regpoly1, regpoly2. Can be a custom user function.
 corr Correlation function to be used: corrnisykrging (default), corrkriging, corrnisygauss, corrgauss, correxpg, correxpg, corrlinear, corrcubic, corrspherical, corrspline. Can also be user supplied (if in the right form).
 target target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation, "ei" for expected improvement. See also predict.kriging. This can also be changed after the model has been build, by manipulating the respective object$target value.

Value

returns an object of class dace with the following elements:

model A list, containing model parameters
like Estimated likelihood value
theta activity parameters theta (vector)
p exponents p (vector)
lambda nugget value (numeric)
nevals Number of iterations during MLE
Author(s)

The authors of the original DACE Matlab toolbox http://www.imm.dtu.dk/projects/dace/ are Hans Bruun Nielsen <hbn@imm.dtu.dk>, Soren Nymand Lophaven and Jacob Sondergaard. Extension of the Matlab code by Tobias Wagner <wagner@isf.de>. Porting and adaptation to R and further extensions by Martin Zaefferer <martin.zaefferer@fh-koeln.de>.

References

See Also

predict.dace

Examples

```r
## Create design points
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points
y <- funSphere(x)
## Create model with default settings
fit <- buildKrigingDACE(x,y)
## Print model parameters
print(fit)
## Create with different regression and correlation functions
fit <- buildKrigingDACE(x,y,control=list(regr=regpoly2,corr=corrspline))
## Print model parameters
print(fit)
```

buildLM
Linear Model Interface

Description

This is a simple wrapper for the lm function, which fits linear models. The purpose of this function is to provide an interface as required by SPOT, to enable modeling and model-based optimization with linear models. The linear model is built with main effects. Optionally, the model is also subject to the AIC-based stepwise algorithm, using the step function from the stats package.

Usage

```r
buildLM(x, y, control = list())
```
Arguments

- **x**: matrix of input parameters. Rows for each point, columns for each parameter.
- **y**: one column matrix of observations to be modeled.
- **control**: list of control parameters, currently only with parameters `useStep` and `formula`. The `useStep` boolean specifies whether the `step` function is used. The `formula` is passed to the `lm` function. Without a formula, a second order model will be built.

Value

an object of class "spotLinearModel", with a `predict` method and a `print` method.

Examples

```r
## Test-function:
braninFun <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
}
## Create design points
set.seed(1)
x <- cbind(runif(20)*15-5, runif(20)*15)
## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x, 1, braninFun))
## Create model
fit <- buildLM(x, y, control = list(algTheta = optimLHD))
## Print model parameters
print(fit)
## Predict at new location
predict(fit, cbind(1, 2))
## True value at location
braninFun(c(1, 2))
```

buildLOESS

Build LOESS Model

Description

Build an interpolation model using the `loess` function. Essentially a SPOT-style interface to that function.

Usage

`buildLOESS(x, y, control = list())`
Arguments

- **x**
 - design matrix (sample locations), rows for each sample, columns for each variable.
- **y**
 - vector of observations at x
- **control**
 - named list, with the options for the model building procedure loess. These will be passed to loess as arguments. Please refrain from setting the formula or data arguments as these will be supplied by the interface, based on x and y.

Value

- returns an object of class `spotLOESS`.

See Also

- `predict.spotLOESS`

Examples

```r
## Create a test function: branin
braninFunction <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
}
## Create design points
set.seed(1)
x <- cbind(runif(40)*15-5,runif(40)*15)
## Compute observations at design points
y <- as.matrix(apply(x,1,braninFunction))
## Create model with default settings
fit <- buildLOESS(x,y)
fit
## Predict new point
predict(fit,cbind(1,2))
## True value at location
braninFunction(c(1,2))
## Change model control
fit <- buildLOESS(x,y,control=list(parametric=c(TRUE,FALSE)))
fit
```

Description

This is a simple wrapper for the randomForest function from the randomForest package. The purpose of this function is to provide an interface as required by SPOT, to enable modeling and model-based optimization with random forest.
Build Response Surface Model

Usage

buildRandomForest(x, y, control = list())

Arguments

x matrix of input parameters. Rows for each point, columns for each parameter.
y one column matrix of observations to be modeled.
control list of control parameters, currently not used.

Value

an object of class "spotRandomForest", with a predict method and a print method.

Examples

Not run:
Test-function:
braninFunction <- function (x) {
 10 * (1 - 1/(8 * pi)) * cos(x[1])) + 10
}
Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,braninFunction))
Create model
fit <- buildRandomForest(x,y,control = list(algTheta=optimLHD))
Print model parameters
print(fit)
Predict at new location
predict(fit,cbind(1,2))
True value at location
braninFunction(c(1,2))

End(Not run)
Arguments

- **x**: design matrix (sample locations), rows for each sample, columns for each variable.
- **y**: vector of observations at x
- **control**: (list), with the options for the model building procedure:

 - `mainEffectsOnly`: Logical, defaults to FALSE. Set to TRUE if a model with main effects only is desired (no interactions, second order effects).
 - `canonical`: Logical, defaults to FALSE. If this is TRUE, use the canonical path to descent from saddle points. Else, simply use steepest descent.

Value

returns an object of class `spotRSM`.

See Also

`predict.spotRSM`

Examples

```r
## Create a test function: branin
braninFunction <- function(x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
}
## Create design points
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points
y <- as.matrix(apply(x,1,braninFunction))
## Create model with default settings
fit <- buildRSM(x,y)
## Predict new point
predict(fit,cbind(1,2))
## True value at location
braninFunction(c(1,2))
## plots
plot(fit)
## path of steepest descent
descentSpotRSM(fit)
```

dataGasSensor

Gas Sensor Data

Description

A data set of a Gas Sensor, similar to the one used by Rebolledo et al. 2016. It also contains information of 10 different test/training splits, to enable comparable evaluation procedures.
Usage
dataGasSensor

Format
A data frame with 280 rows and 20 columns (1 output, 7 input, 2 disturbance, 10 training/test split):

<table>
<thead>
<tr>
<th>Y</th>
<th>Measured Sensor Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Sensor Input 1</td>
</tr>
<tr>
<td>X2</td>
<td>Sensor Input 2</td>
</tr>
<tr>
<td>X3</td>
<td>Sensor Input 3</td>
</tr>
<tr>
<td>X4</td>
<td>Sensor Input 4</td>
</tr>
<tr>
<td>X5</td>
<td>Sensor Input 5</td>
</tr>
<tr>
<td>X6</td>
<td>Sensor Input 6</td>
</tr>
<tr>
<td>X7</td>
<td>Sensor Input 7</td>
</tr>
<tr>
<td>Batch</td>
<td>Disturbance variable, measurement batch</td>
</tr>
<tr>
<td>Sensor</td>
<td>Disturbance variable, sensor ID</td>
</tr>
<tr>
<td>Set1</td>
<td>test/training split, 1 is training data, 2 is test data</td>
</tr>
<tr>
<td>Set2</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set3</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set4</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set5</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set6</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set7</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set8</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set9</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set10</td>
<td>test/training split</td>
</tr>
</tbody>
</table>

Two different modeling tasks are of interest for this data set: \(Y \sim X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + \text{Batch} + \text{Sensor} \) and \(X_1 \sim Y + X_7 + \text{Batch} + \text{Sensor} \).

References
Margarita A. Rebolledo C., Sebastian Krey, Thomas Bartz-Beielstein, Oliver Flasch, Andreas Fischbach and Joerg Stork. 2016. Modeling and Optimization of a Robust Gas Sensor. 7th International Conference on Bioinspired Optimization Methods and their Applications (BIOMA 2016).
DescendSpotRSM
Descent RSM model

Description

Generate steps along the path of steepest descent for a RSM model. This is only intended as a manual tool to use together with `buildRSM`.

Usage

```
descendSpotRSM(object)
```

Arguments

- `object`
 RSM model (settings and parameters) of class `spotRSM`.

Value

list with

- `x` list of points along the path of steepest descent
- `y` corresponding predicted values

See Also

`buildRSM`

designLHD
Latin Hypercube Design Generator

Description

 Creates a latin Hypercube Design (LHD) with user-specified dimension and number of design points. LHDs are created repeatedly created at random. For each each LHD, the minimal pairwise distance between design points is computed. The design with the maximum of that minimal value is chosen.

Usage

```
designLHD(x = NULL, lower, upper, control = list())
```
Arguments

- **x**: optional matrix x, rows for points, columns for dimensions. This can contain one or more points which are part of the design, but specified by the user. These points are added to the design, and are taken into account when calculating the pair-wise distances. They do not count for the design size. E.g., if x has two rows, control$replicates is one and control$size is ten, the returned design will have 12 points (12 rows). The first two rows will be identical to x. Only the remaining ten rows are guaranteed to be a valid LHD.

- **lower**: vector with lower boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)

- **upper**: vector with upper boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)

- **control**: list of controls:
 - **size**: number of design points
 - **retries**: number of retries during design creation
 - **types**: this specifies the data type for each design parameter, as a vector of either "numeric", "integer", "factor". (here, this only affects rounding)
 - **inequalityConstraint**: inequality constraint function, smaller zero for infeasible points. Used to replace infeasible points with random points.
 - **replicates**: integer for replications of each design point. E.g., if replications is two, every design point will occur twice in the resulting matrix.

Value

- matrix design
 - design has length(lower) columns and (size + nrow(x))*control$replicates rows. All values should be within lower <= design <= upper

Author(s)

Original code by Christian Lasarczyk, adaptations by Martin Zaefferrer

Examples

- `set.seed(1) #set RNG seed to make examples reproducible`
- `design <- designLHD(1,2) #simple, 1-D case`
- `design <- designLHD(1,2,control=list(replicates=3)) #with replications`
- `design <- designLHD(c(-1,-2,1,0),c(1,4,9,1)), control=list(size=5, retries=100, types=c("numeric","integer","factor","factor")))`
- `design x <- designLHD(c(1,-10),c(2,10),control=list(size=5,retries=100))`
- `x2 <- designLHD(x,c(1,-10),c(2,10),control=list(size=5,retries=100))`
- `plot(x2)`
- `points(x, pch=19)`
designUniformRandom
Uniform Design Generator

Description

Create a simple experimental design based on uniform random sampling.

Usage

\[
\text{designUniformRandom}(x = \text{NULL}, \text{lower}, \text{upper}, \text{control} = \text{list()})
\]

Arguments

- **x**: optional data.frame x to be part of the design
- **lower**: vector with lower boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)
- **upper**: vector with upper boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)
- **control**: list of controls:
 - **size**: number of design points
 - **types**: this specifies the data type for each design parameter, as a vector of either "numeric", "integer", "factor". (here, this only affects rounding)
 - **replicates**: integer for replications of each design point. E.g., if replicates is two, every design point will occur twice in the resulting matrix.

Value

- design has length(lower) columns and (size + nrow(x))*control$replicates rows. All values should be within lower <= design <= upper

Examples

```r
set.seed(1) #set RNG seed to make examples reproducible
design <- designUniformRandom(c(1,2)) #simple, 1-D case
design
design <- designUniformRandom(c(1,2),control=list(replicates=3)) #with replications
design
design <- designUniformRandom(c(-1,2,1,0),c(1,4,9,1),
control=list(size=5, types=c("numeric","integer","factor","factor")))
design
x <- designUniformRandom(c(1,-10),c(2,10),control=list(size=5))
x2 <- designUniformRandom(x,c(1,-10),c(2,10),control=list(size=5))
plot(x2)
points(x, pch=19)
```
expectedImprovement Expected Improvement

Description
Compute the negative logarithm of the Expected Improvement of a set of candidate solutions. Based on mean and standard deviation of a candidate solution, this estimates the expectation of improvement. Improvement considers the amount by which the best known value (best observed value) is exceeded by the candidates.

Usage
expectedImprovement(mean, sd, min)

Arguments
mean vector of predicted means of the candidate solutions.
sd vector of estimated uncertainties / standard deviations of the candidate solutions.
min minimal observed value.

Value
a vector with the negative logarithm of the expected improvement values, -log10(EI).

Examples
mean <- 1:10 #mean of the candidates
sd <- 10:1 #st. deviation of the candidates
min <- 5 #best known value
EI <- expectedImprovement(mean, sd, min)
EI

funCyclone Objective function - Cyclone Simulation: Barth/Muschelknautz

Description
Calculate cyclone collection efficiency. A simple, physics-based optimization problem (potentially bi-objective). See the references [1,2].

Usage
funCyclone(x, deterministic = c(T, T, T), cyclone = list(Da = 1.26, H = 2.5, Dt = 0.42, Ht = 0.65, He = 0.6, Be = 0.2), fluid = list(Mu = 1.85e-05, Ve = (50/36)/0.12, lambdag = 1/200, Rhop = 2000, Rhof = 1.2, Croh = 0.05),
noiseLevel = list(Vp = 0.1, Rhop = 0.05), model = "Barth-Muschelknautz",
intervals = c(0, 2, 4, 6, 8, 10, 15, 20, 30) * 1e-06, delta = c(0, 0.02, 0.03, 0.05, 0.1, 0.3, 0.3, 0.2))
funCyclone

Arguments

x vector of length at least one and up to six, specifying non-default geometrical parameters in [m]: Da, H, Dt, Ht, He, Be

deterministic binary vector. First element specifies whether volume flow is deterministic or not. Second element specifies whether particle density is deterministic or not. Third element specifies whether particle diameters are deterministic or not. Default: All are deterministic (TRUE).

cyclone list of a default cyclone’s geometrical parameters: fluid$Da, fluid$H, fluid$Dt, fluid$Ht, fluid$He and fluid$Be

fluid list of default fluid parameters: fluid$Mu, fluid$Vp, fluid$Rhop, fluid$Rhof and fluid$Croh

noiseLevel list of noise levels for volume flow (noiseLevel$Vp) and particle density (noiseLevel$Rhop), only used if non-deterministic.

model type of the model (collection efficiency only): either "Barth-Muschelknautz" or "Mothes"

intervals vector specifying the particle size interval bounds.

delta vector of densities in each interval (specified by intervals). Should have one element less than the intervals parameter.

Value

returns a function that calculates the fractional efficiency for the specified diameter, see example.

References

Examples

```r
## Call directly
funCyclone(c(1.26,2.5))
## create vectorized target function, vectorized, first objective only
## Also: negated, since SPOT always does minimization.
tfunvecF1 <- function(x){-apply(x,1,funCyclone)[1,]}
tfunvecF1(matrix(c(1.26,2.5,1,2),2,2,byrow=TRUE))
## optimize with spot
res <- spot(fun=tfunvecF1,lower=c(1,2),upper=c(2,3),
            control=list(modelControl=list(target="ei"),
                         model=buildKriging,optimizer=optimLBFGSB,plots=TRUE))
## best found solution ...
```
funSphere | Sphere Test Function

Description

Sphere Test Function

Usage

funSphere(x)

Arguments

x matrix of points to evaluate with the sphere function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

Examples

funSphere(matrix(runif(18),,3))

optimDE | Minimization by Differential Evolution

Description

For minimization, this function uses the "DEoptim" method from the codeDEoptim package. It is basically a wrapper, to enable DEoptim for usage in SPOT.

Usage

optimDE(x = NULL, fun, lower, upper, control = list(), ...)

res$xbest
... and its objective function value
res$ybest

```r
res$xbest
## ... and its objective function value
res$ybest
```
Arguments

- `x` optional start point, not used in DEoptim
- `fun` objective function, which receives a matrix `x` and returns observations `y`
- `lower` boundary of the search space
- `upper` boundary of the search space
- `control` list of control parameters
 - `funEvals` Budget, number of function evaluations allowed. Default is 200.
 - `populationSize` Population size or number of particles in the population. Default is 10*dimension.
 - ... passed to `fun`

Value

list, with elements

- `x` archive of the best member at each iteration
- `y` archive of the best value of fn at each iteration
- `xbest` best solution
- `ybest` best observation
- `count` number of evaluations of `fun`

Examples

```r
res <- optimES(x = NULL, fun, lower, upper, control = list(), ...)
```

Description

This is an implementation of an Evolution Strategy.

Usage

```r
optimES(x = NULL, fun, lower, upper, control = list(), ...)
```
Arguments

x optional start point, not used
fun objective function, which receives a matrix x and returns observations y
lower is a vector that defines the lower boundary of search space (this also defines the dimensionality of the problem)
upper is a vector that defines the upper boundary of search space (same length as lower)
control list of control parameters. The control list can contain the following settings:
 funEvals number of function evaluations, stopping criterion, default is 500
 mue number of parents, default is 10
 nu selection pressure. That means, number of offspring (lambda) is mue multiplied with nu. Default is 10
 mutation string of mutation type, default is 1
 sigmaInit initial sigma value (step size), default is 1.0
 nSigma number of different sigmas, default is 1
 tau0 number, default is 0.0. tau0 is the general multiplier.
 tau number, learning parameter for self adaption, i.e. the local multiplier for step sizes (for each dimension).default is 1.0
 rho number of parents involved in the procreation of an offspring (mixing number), default is "bi"
 sel number of selected individuals, default is 1
 maxGen number of generations, stopping criterion, default is Inf
 seed number, random seed, default is 1
 noise number, value of noise added to fitness values, default is 0.0
 verbosity defines output verbosity of the ES, default is 0
 plotResult boolean, specifies if results are plotted, default is FALSE
 logPlotResult boolean, defines if plot results should be logarithmic, default is FALSE
 sigmaRestart number, value of sigma on restart, default is 0.1
 preScanMult initial population size is multiplied by this number for a pre-scan, default is 1
 globalOpt termination criterion on reaching a desired optimum value, default is rep(0, dimension)
 ...
 additional parameters to be passed on to fun
Value

- list, with elements
 - x: NULL, currently not used
 - y: NULL, currently not used
 - xbest: best solution
 - ybest: best observation
 - count: number of evaluations of fun

Examples

```r
cont <- list(funEvals=100)
optimES(fun=funSphere, lower=rep(0, 2), upper=rep(1, 2), control=cont)
```

Description

For minimization, this function uses the "genoud" method from the codergenoud package. It is basically a wrapper, to enable genoud for usage in SPOT.

Usage

```r
optimGenoud(x = NULL, fun, lower, upper, control = list(), ...)  
```

Arguments

- x: optional start point, not used
- fun: objective function, which receives a matrix x and returns observations y
- lower: boundary of the search space
- upper: boundary of the search space
- control: list of control parameters
 - funEvals: Budget, number of function evaluations allowed. Default is 100.
 - populationSize: Population size, number of individuals in the population. Default is 10*dimension.
- ...: passed to fun
Value

list, with elements

x NULL, currently not used
y NULL, currently not used
xbest best solution
ybest best observation
count number of evaluations of fun

Examples

```r
res <- optimGenoud(fun = funSphere, lower = c(-10,-20), upper=c(20,8))
res$ybest
```

optimLBFGSB
Minimization by L-BFGS-B

Description

For minimization, this function uses the "L-BFGS-B" method from the `optim` function, which is part of the codestats package. It is basically a wrapper, to enable L-BFGS-B for usage in SPOT.

Usage

```r
optimLBFGSB(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- **x**
 optional matrix of points. Only first point (row) is used as startpoint.

- **fun**
 objective function, which receives a matrix x and returns observations y

- **lower**
 boundary of the search space

- **upper**
 boundary of the search space

- **control**
 list of control parameters

 - `funEvals`
 Budget, number of function evaluations allowed. Default is 100.

 All other control parameters accepted by the `optim` function can be used, too, and are passed to `optim`.

- **...**
 passed to `fun`
Value

- list, with elements
 - x NA, not used
 - y NA, not used
 - xbest best solution
 - ybest best observation
 - count number of evaluations of fun (estimated from the more complicated "counts" variable returned by optim)
 - message termination message returned by optim

Examples

```r
res <- optimLHD(fun = funSphere, lower = c(-10,-20), upper = c(20,8))
res$ybest
```

optimLHD
Minimization by Latin Hypercube Sampling

Description

This uses Latin Hypercube Sampling (LHS) to optimize a specified target function. A Latin Hypercube Design (LHD) is created with `designLHD`, then evaluated by the objective function. All results are reported, including the best (minimal) objective value, and corresponding design point.

Usage

```r
optimLHD(x = NULL, fun, lower, upper, control = list(), ...)```

**Arguments**

- x optional matrix of points to be included in the evaluation
- fun objective function, which receives a matrix x and returns observations y
- lower boundary of the search space
- upper boundary of the search space
- control list of control parameters
  - funEvals Budget, number of function evaluations allowed. Default: 100.
  - retries Number of retries for design generation, used by `designLHD`. Default: 100.
- ... passed to fun
Value

list, with elements

x  archive of evaluated solutions
y  archive of observations
xbest  best solution
ybest  best observation
count  number of evaluations of \textup{fun}
message  success message

Examples

\begin{verbatim}
res <- optimLHD(x = fun = funSphere, lower = c(-10, -20), upper = c(20, 8))
res$ybest
\end{verbatim}

\begin{verbatim}
optimNLOPTR  Minimization by NLOPT
\end{verbatim}

Description

This is a wrapper that employs the \texttt{nloptr} function from the package of the same name. The \texttt{nloptr} function itself is an interface to the \texttt{nlopt} library, which contains a wide selection of different optimization algorithms.

Usage

\texttt{optimNLOPTR(x = NULL, fun, lower, upper, control = list(), ...)}

Arguments

\begin{itemize}
  \item \texttt{x}  \hspace{1cm} \text{optional matrix of points to be included in the evaluation (only first row will be used)}
  \item \texttt{fun}  \hspace{1cm} \text{objective function, which receives a matrix \texttt{x} and returns observations \texttt{y}}
  \item \texttt{lower}  \hspace{1cm} \text{boundary of the search space}
  \item \texttt{upper}  \hspace{1cm} \text{boundary of the search space}
  \item \texttt{control}  \hspace{1cm} \text{named list, with the options for \texttt{nloptr}. These will be passed to \texttt{nloptr} as arguments. In addition, the following parameter can be used to set the function evaluation budget:}
    \begin{itemize}
      \item \texttt{funEvals}  \hspace{1cm} \text{Budget, number of function evaluations allowed. Default: 100.}
    \end{itemize}
  \item \texttt{...}  \hspace{1cm} \text{passed to \texttt{fun}}
\end{itemize}
Value

- list, with elements
  - x: archive of evaluated solutions
  - y: archive of observations
  - xbest: best solution
  - ybest: best observation
  - count: number of evaluations of fun
  - message: success message

Examples

```r
Not run:
simple example:
res <- optimNLOPTR(fun = funSphere, lower = c(-10, -20), upper = c(20, 8))
with an inequality constraint:
contr <- list() # control list
specify constraint
ccontr$eval.g.ineq <- function(x) 1 + x[1] - x[2]
res <- optimNLOPTR(fun = funSphere, lower = c(-10, -20), upper = c(20, 8), control = contr)
res
End(Not run)
```

plotData

Interpolated plot

Description

A (filled) contour or perspective plot of a data set with two independent and one dependent variable. The plot is generated by some interpolation or regression model. By default, the loess function is used.

Usage

```
plotData(x, y, which = 1:2, constant = x[which.min(y)],
 model = buildLOESS, modelControl = list(), xlab = c("x1", "x2"),
 ylab = "y", type = "filled.contour", ...)
```

Arguments

- x: independent variables, or input variables. this should be a matrix of at least two columns and several rows. If more than two columns are present, all will be used for fitting the model. The parameter which will determine which of these will be plotted, and the parameter constant will determine the values of all parameters that are not varied.
plotFunction

Surface plot of a function

Description

A (filled) contour plot or perspective / surface plot of a function.

Examples

```r
generate random test data
testfun <- function (x) sum(x^2)
set.seed(1)
k <- 30
x <- cbind(runif(k)*15-5, runif(k)*15)
y <- as.matrix(apply(x,1,testfun))
plotData(x,y)
plotData(x,y,type="contour")
plotData(x,y,type="persp")
```
plotFunction

Usage

plotFunction(f = function(x) { rowSums(x^2) }, lower = c(0, 0),
upper = c(1, 1), type = "filled.contour", s = 100, xlab = "x1",
ylab = "x2", zlab = "y", color.palette = terrain.colors, title = "",
levels = NULL, points1, points2, pch1 = 20, pch2 = 8, lwd1 = 1,
lwd2 = 1, cex1 = 1, cex2 = 1, col1 = "red", col2 = "black",
theta = -40, phi = 40, ...)  

Arguments

f function to be plotted. The function should either be able to take two vectors or
one matrix specifying sample locations. i.e. z=f(x) or z=f(x2, x1) where Z is
a two column matrix containing the sample locations x1 and x2.
lower boundary for x1 and x2 (defaults to c(0, 0)).
upper boundary (defaults to c(1, 1)).
type string describing the type of the plot: "filled.contour" (default), "contour", "persp" (perspective), or \ code"persp3d" plot.
s number of samples along each dimension. e.g. f will be evaluated s^2 times.
xlab label of first axis
ylab label of second axis
zlab label of third axis
color.palette colors used, default is terrain.color
title of the plot
levels number of levels for the plotted function value. Will be set automatically with
default NULL.. (contour plots only)
points1 can be omitted, but if given the points in this matrix are added to the plot in
form of dots. Contour plots and persp3d only. Contour plots expect matrix with
two columns for coordinates. 3Dperspective expects matrix with three columns,
third column giving the corresponding observed value of the plotted function.
points2 can be omitted, but if given the points in this matrix are added to the plot in form
of crosses. Contour plots and persp3d only. Contour plots expect matrix with
two columns for coordinates. 3Dperspective expects matrix with three columns,
third column giving the corresponding observed value of the plotted function.
pch1 pch (symbol) setting for points1 (default: 20). (contour plots only)
pch2 pch (symbol) setting for points2 (default: 8). (contour plots only)
lwd1 line width for points1 (default: 1). (contour plots only)
lwd2 line width for points2 (default: 1). (contour plots only)
cex1 cex for points1 (default: 1). (contour plots only)
cex2 cex for points2 (default: 1). (contour plots only)
col1 color for points1 (default: "black"). (contour plots only)
col2 color for points2 (default: "black"). (contour plots only)
theta  angle defining the viewing direction. theta gives the azimuthal direction and phi the colatitude. (persp plot only)
phi angle defining the viewing direction. theta gives the colatitude. (persp plot only)

See Also
plotData.plotModel

Examples

plotFunction(function(x){rowSums(x^2)},c(-5,0),c(10,15))
plotFunction(function(x){rowSums(x^2)},c(-5,0),c(10,15),type="contour")
plotFunction(function(x){rowSums(x^2)},c(-5,0),c(10,15),type="persp")

plotModel Surface plot of a model

Description
A (filled) contour or perspective plot of a fitted model.

Usage

plotModel(object, which = 1:2, constant = object$x[which.min(object$y), ],
          xlab = paste("x", which, sep = ""), ylab = "y", type = "filled.contour",
          ...)

Arguments

object fit created by a modeling function, e.g., buildRandomForest.
which a vector with two elements, each an integer giving the two independent variables of the plot (the integers are indices of the respective data set).
constant a numeric vector that states for each variable a constant value that it will take on if it is not varied in the plot. This affects the parameters not selected by the which parameter. By default, this will be fixed to the best known solution, i.e., the one with minimal y-value, according to which.min(object$y). The length of this numeric vector should be the same as the number of columns in object$x
xlab a vector of characters, giving the labels for each of the two independent variables.
ylab character, the value of the dependent variable predicted by the corresponding model.
type string describing the type of the plot: "filled.contour" (default), "contour", "persp" (perspective), or "persp3d" plot.
... additional parameters passed to the contour or filled.contour function.
See Also

plotFunction, plotData

Examples

```r
generate random test data
testfun <- function(x) sum(x^2)
set.seed(1)
k <- 30
x <- cbind(runif(k)*15-5, runif(k)*15, runif(k)*2-7, runif(k)*5+22)
y <- as.matrix(apply(x, 1, testfun))
fit <- buildLM(x, y)
plotModel(fit)
plotModel(fit, type="contour")
plotModel(fit, type="persp")
plotModel(fit, which=c(1,4))
plotModel(fit, which=2:3)
```

Description

A simple interface to the Optimal Computing Budget Allocation algorithm.

Usage

`repeatsOCBA(x, y, budget)`

Arguments

- **x**: matrix of samples. Identical rows indicate repeated evaluations. Any sample should be evaluated at least twice, to get an estimate of the variance.
- **y**: observations of the respective samples. For repeated evaluations, y should differ (variance not zero).
- **budget**: of additional evaluations to be allocated to the samples.

Value

A vector that specifies how often each solution should be evaluated.

References

See Also

repeatsOCBA calls OCBA, which also provides some additional details.

Examples

```r
x <- matrix(c(1:3,1:3),9,2)
y <- runif(9)
repeatsOCBA(x,y,10)
```

Description

This is one of the main interfaces for using the SPOT package. Based on a user-given objective function and configuration, `spot` finds the parameter setting that yields the lowest objective value (minimization). To that end, it uses methods from the fields of design of experiment, statistical modeling / machine learning and optimization.

Usage

```r
spot(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- `x` is an optional start point (or set of start points), specified as a matrix. One row for each point, and one column for each optimized parameter.
- `fun` is the objective function. It should receive a matrix `x` and return a matrix `y`. In case the function uses external code and is noisy, an additional seed parameter may be used, see the `control$seedFun` argument below for details.
- `lower` is a vector that defines the lower boundary of search space. This determines also the dimensionality of the problem.
- `upper` is a vector that defines the upper boundary of search space.
- `control` is a list with control settings for `spot`. See `spotControl`.
- `...` additional parameters passed to `fun`.

Value

This function returns a list with:

- `xbest` Parameters of the best found solution (matrix).
- `ybest` Objective function value of the best found solution (matrix).
- `x` Archive of all evaluation parameters (matrix).
- `y` Archive of the respective objective function values (matrix).
- `count` Number of performed objective function evaluations.
msg  Message specifying the reason of termination.

modelFit  The fit of the last build model, i.e., an object returned by the last call to the function specified by control$model.

Examples

```r
Most simple example: Kriging + LHS + predicted
mean optimization (not expected improvement)
res <- spot(funSphere, c(-2,-3), c(1,2))
res$best

With expected improvement
res <- spot(funSphere, c(-2,-3), c(1,2),
 control=list(modelControl=list(target="ei")))
res$best

With additional start point:
res <- spot(matrix(c(0.05,0.1), 1,2), funSphere, c(-2,-3), c(1,2))
res$best

Use a local optimizer instead of LHS
res <- spot(funSphere, c(-2,-3), c(1,2),
 control=list(optimizer=optimLBFGSB))
res$best

Random Forest instead of Kriging
res <- spot(funSphere, c(-2,-3), c(1,2),
 control=list(model=buildRandomForest))
res$best

LM instead of Kriging
res <- spot(funSphere, c(-2,-3), c(1,2),
 control=list(model=buildLM))
res$best

LM and local optimizer (which for this simple example is perfect)
res <- spot(funSphere, c(-2,-3), c(1,2),
 control=list(model=buildLM, optimizer=optimLBFGSB))
res$best

Or a different Kriging model:
res <- spot(funSphere, c(-2,-3), c(1,2),
 control=list(model=buildKrigingDACE, optimizer=optimLBFGSB))
res$best

With noise: (this takes some time)
res1 <- spot(function(x)funSphere(x)+rnorm(nrow(x)), c(-2,-3), c(1,2),
 control=list(funEvals=100, noise=TRUE)) #noisy objective
res2 <- spot(function(x)funSphere(x)+rnorm(nrow(x)), c(-2,-3), c(1,2),
 control=list(funEvals=100, noise=TRUE, replicates=2,
 # designControl=list(replicates=2))) #noise with replicated evaluations
res3 <- spot(function(x)funSphere(x)+rnorm(nrow(x)), c(-2,-3), c(1,2),
 control=list(funEvals=100, noise=TRUE, replicates=2, OCBAT=0, OCBABudget=1,
 # designControl=list(replicates=2))) #and with OCBA

Check results with non-noisy function:
funSphere(res1$best)
funSphere(res2$best)
```
This function is used by optimes as a main loop for running the Evolution Strategy with the given parameter set specified by SPOT.

Usage

```r
call to spotAlgEs
spotAlgEs(mue = 10, nu = 10, dimension = 2, mutation = 2, sigmaInit = 1, nSigma = 1, tau0 = 0, tau = 1, rho = "bi", sel = -1, stratReco = 1, objReco = 2, maxGen = Inf, maxIter = Inf, seed = 1, noise = 0, fName = funSphere, lowerLimit = -1, upperLimit = 1, verbosity = 0, plotResult = FALSE, logPlotResult = FALSE, sigmaRestart = 0.1, preScanMult = 1, globalOpt = NULL, ...)
```

Arguments

- `mue` number of parents, default is 10
nu: selection pressure. That means, number of offspring (lambda) is mu multiplied with nu. Default is 10

dimension: dimension number of the target function, default is 2

mutation: mutation type, either 1 or 2, default is 1

sigmaInit: initial sigma value (step size), default is 1.0

nSigma: number of different sigmas, default is 1

tau0: number, default is 0.0. tau0 is the general multiplier.

tau: number, learning parameter for self adaption, default is 1.0. tau is the local multiplier for step sizes (for each dimension).

rho: number of parents involved in the procreation of an offspring (mixing number), default is "bi"

sel: number of selected individuals, default is 1


maxGen: number of generations, stopping criterion, default is Inf

maxIter: number of iterations (function evaluations), stopping criterion, default is 100

seed: number, random seed, default is 1

noise: number, value of noise added to fitness values, default is 0.0

fname: function, fitness function, default is funSphere

lowerLimit: number, lower limit for search space, default is -1.0

upperLimit: number, upper limit for search space, default is 1.0

verbosity: defines output verbosity of the ES, default is 0

plotResult: boolean, asks if results are plotted, default is FALSE

logPlotResult: boolean, asks if plot results should be logarithmic, default is FALSE

sigmaRestart: number, value of sigma on restart, default is 0.1

preScanMult: initial population size is multiplied by this number for a pre-scan, default is 1

globalOpt: termination criterion on reaching a desired optimum value, should be a vector of length dimension (LOCATION of the optimum). Default to NULL, which means it is ignored.

... additional parameters to be passed on to fName
spotLoop

Sequential Parameter Optimization Main Loop

Description

SPOT is usually started via the function spot. However, SPOT runs can be continued (i.e., with a larger budget specified in control$funEvals) by using spotLoop. This is the main loop of SPOT iterations. It requires the user to give the same inputs as specified for spot.

Usage

spotLoop(x, y, fun, lower, upper, control, ...)

Arguments

x are the known candidate solutions that the SPOT loop is started with, specified as a matrix. One row for each point, and one column for each optimized parameter.
y are the corresponding observations for each solution in x, specified as a matrix. One row for each point.
fun is the objective function. It should receive a matrix x and return a matrix y. In case the function uses external code and is noisy, an additional seed parameter may be used, see the control$seedFun argument below for details.
lower is a vector that defines the lower boundary of search space. This determines also the dimensionality of the problem.
upper is a vector that defines the upper boundary of search space.
control is a list with control settings for spot. See spotControl.
... additional parameters passed to fun.

Value

This function returns a list with:

xbest Parameters of the best found solution (matrix).
ybest Objective function value of the best found solution (matrix).
x Archive of all evaluation parameters (matrix).
y Archive of the respective objective function values (matrix).
count Number of performed objective function evaluations.
msg Message specifying the reason of termination.
modelFit The fit of the last build model, i.e., an object returned by the last call to the function specified by control$model.
Examples

```r
Most simple example: Kriging + LHS + predicted
mean optimization (not expected improvement)
control <- list(funEvals=20)
res <- spot(funSphere,c(-2,-3),c(1,2),control)
now continue with larger budget
control$funEvals <- 25
res2 <- spotLoop(resx,resy,funSphere,c(-2,-3),c(1,2),control)
res2xbest
res2ybest
```

---

**wrapFunction**  
*Function Evaluation Wrapper*

**Description**

This is a simple wrapper that turns a function of type $y=f(x)$, where $x$ is a vector and $y$ is a scalar, into a function that accepts and returns matrices, as required by `spot`. Note that the wrapper essentially makes use of the `apply` function. This is effective, but not necessarily efficient. The wrapper is intended to make the use of `spot` easier, but it could be faster if the user spends some time on a more efficient vectorization of the target function.

**Usage**

```r
wrapFunction(fun)
```

**Arguments**

- `fun`  
  the function $y=f(x)$ to be wrapped, with $x$ a vector and $y$ a numeric

**Value**

a function in the style of $y=f(x)$, accepting and returning a matrix

**Examples**

```r
example function
branin <- function (x) {
 10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
 y
}
vectorize / wrap
braninWrapped <- wrapFunction(branin)
test original
branin(c(1,2))
branin(c(2,2))
branin(c(2,1))
test wrapped
```
braninWrapped(matrix(c(1,2,2,2,1),3,2,byrow=TRUE))
Index

+Topic **datasets**
  - dataGasSensor, 13

+Topic **package**
  - SPOT-package, 2
    - buildEnsembleStack, 4
    - buildKriging, 5
    - buildKrigingDACE, 8
    - buildLM, 9
    - buildLOESS, 10
    - buildRandomForest, 11, 30
    - buildRSM, 12, 15
    - corrcubic, 8
    - correxp, 8
    - correxpG, 8
    - corrgauss, 8
    - corrkriging, 8
    - corrlin, 8
    - corrnoisygauss, 8
    - corrnoisykriging, 8
    - corrspherical, 8
    - corrspline, 8
  - dataGasSensor, 13
  - descentSpotRSM, 15
  - designLHD, 15, 25
  - designUniformRandom, 17
  - expectedImprovement, 18
  - funCyclone, 18
  - funSphere, 20, 35
  - OCBA, 32
  - optimDE, 20
  - optimES, 21, 34
  - optimGenoud, 23
  - optimLBFGSB, 24
  - optimLHD, 25
  - optimNLOPT, 26

  - plotData, 27, 30, 31
  - plotFunction, 28, 28, 31
  - predictModel, 28, 30, 30
  - predict.dace, 9
  - predict.ensembleStack, 4
  - predict.kriging, 6–8
  - predict.spotLOESS, 11
  - predict.spotRSM, 13
  - regpoly0, 8
  - regpoly1, 8
  - regpoly2, 8
  - repeatsOCBA, 31
  - SPOT (SPOT-package), 2
  - spot, 3, 32, 36, 37
  - SPOT-package, 2
  - spotAlgEs, 34
  - spotControl, 32, 36
  - spotLoop, 36

  - wrapFunction, 37