Example Session for Supervised Classification

Andreas Borg, Murat Sariyar

July 27, 2016

This document shows an example session for using supervised classification in the package RecordLinkage for deduplication of a single data set. Conducting linkage of two data sets differs only in the step of generating record pairs.

See also the vignette on Fellegi-Sunter deduplication for some general information on using the package.

1 Generating comparison patterns

In this session, a training set with 50 matches and 250 non-matches is generated from the included data set RLData10000. Record pairs from the set RLData500 are used to calibrate and subsequently evaluate the classifiers.

 > data(RLdata500)
 > data(RLdata10000)
 > train_pairs=compare.dedup(RLdata10000, identity=identity.RLdata10000,
 + n_match=500, n_non_match=500)
 > eval_pairs=compare.dedup(RLdata500, identity=identity.RLdata500)

2 Training

trainSupv handles calibration of supervised classifiers which are selected through the argument method. In the following, a single decision tree (rpart), a bootstrap aggregation of decision trees (bagging) and a support vector machine are calibrated (svm).

 > model_rpart=trainSupv(train_pairs, method="rpart")
 > model_bagging=trainSupv(train_pairs, method="bagging")
 > model_svm=trainSupv(train_pairs, method="svm")

3 Classification

classifySupv handles classification for all supervised classifiers, taking as arguments the structure returned by trainSupv which contains the classification model and the set of record pairs which to classify.

 > result_rpart=classifySupv(model_rpart, eval_pairs)
 > result_bagging=classifySupv(model_bagging, eval_pairs)
 > result_svm=classifySupv(model_svm, eval_pairs)
4 Results

4.1 Rpart

alpha error 0.000000
beta error 0.013392
accuracy 0.986613

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>123030</td>
<td>0</td>
<td>1670</td>
</tr>
<tr>
<td>TRUE</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

4.2 Bagging

alpha error 0.000000
beta error 0.001516
accuracy 0.998485

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>124511</td>
<td>0</td>
<td>189</td>
</tr>
<tr>
<td>TRUE</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

4.3 SVM

alpha error 0.000000
beta error 0.002253
accuracy 0.997747

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>124419</td>
<td>0</td>
<td>281</td>
</tr>
<tr>
<td>TRUE</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>