Package ‘Rcpp’

November 7, 2018

Title Seamless R and C++ Integration
Version 1.0.0
Date 2018-11-05
Author Dirk Eddelbuettel, Romain Francois, JJ Allaire, Kevin Ushey, Qiang Kou, Nathan Russell, Douglas Bates and John Chambers
Maintainer Dirk Eddelbuettel <edd@debian.org>

Description The ‘Rcpp’ package provides R functions as well as C++ classes which offer a seamless integration of R and C++. Many R data types and objects can be mapped back and forth to C++ equivalents which facilitates both writing of new code as well as easier integration of third-party libraries. Documentation about ‘Rcpp’ is provided by several vignettes included in this package, via the ‘Rcpp Gallery’ site at <http://gallery.rcpp.org>, the paper by Eddelbuettel and Francois (2011, <doi:10.18637/jss.v040.i08>), the book by Eddelbuettel (2013, <doi:10.1007/978-1-4614-6868-4>) and the paper by Eddelbuettel and Balamuta (2018, <doi:10.1080/00031305.2017.1375990>); see ’citation(”Rcpp”)’ for details.

Depends R (>= 3.0.0)
Imports methods, utils
Suggests RUnit, inline, rbenchmark, knitr, rmarkdown, pinp, pkgKitten (>= 0.1.2)
VignetteBuilder knitr

License GPL (>= 2)

BugReports https://github.com/RcppCore/Rcpp/issues

MailingList Please send questions and comments regarding Rcpp to rcpp-devel@lists.r-forge.r-project.org

RoxygenNote 6.0.1

NeedsCompilation yes
Repository CRAN

Date/Publication 2018-11-07 20:00:03 UTC
Description

The \textbf{Rcpp} package provides C++ classes that greatly facilitate interfacing C or C++ code in R packages using the \texttt{.Call} interface provided by R.
Introduction

Rcpp provides C++ classes to facilitate manipulation of a large number of R data structures: vectors, functions, environments, ...

The “Rcpp-introduction” vignette gives an introduction on the package

Usage for package building

The “Rcpp-package” vignette documents how to use Rcpp in client packages.

History

The initial versions of Rcpp were written by Dominick Samperi during 2005 and 2006.
Dirk Eddelbuettel made some additions, and became maintainer in 2008.
Dirk Eddelbuettel and Romain Francois have been extending Rcpp since 2009.

Author(s)

Dirk Eddelbuettel and Romain Francois

References

See Also

Development for Rcpp can be followed via the GitHub repository at http://github.com/RcppCore/Rcpp.

Extensive examples with full documentation are available at http://gallery.rcpp.org.

Examples

```r
## Not run:
# introduction to Rcpp
vignette("Rcpp-introduction")

# information on how to build a package that uses Rcpp
vignette("Rcpp-package")

## End(Not run)
```
Description

completion

Methods

signature(x = "ANY")
signature(x = "C++Object") completes fields and methods of C++ objects
signature(x = "Module") completes functions and classes of modules

C++Class-class

Reflection information for an internal c++ class

Description

Information about an internal c++ class.

Objects from the Class

Objects are usually extracted from a Module using the dollar extractor.

Slots

.Data: mangled name of the class
.pointer: external pointer to the internal information
.module: external pointer to the module
.fields: list of C++Field objects
.constructors: list of C++Constructor objects
.methods: list of C++OverloadedMethods objects
.generator the generator object for the class
docstring description of the class
typeid unmangled typeid of the class
enums enums of the class
.parents names of the parent classes of this class

Methods

show signature(object = "C++Class"): prints the class.
$ signature(object = "C++Class"): ...
C++Constructor-class
Class "C++Constructor"

Description

Representation of a C++ constructor

Extends

Class "envRefClass", directly. Class ".environment", by class "envRefClass", distance 2. Class "refClass", by class "envRefClass", distance 2. Class "environment", by class "envRefClass", distance 3, with explicit coerce. Class "refObject", by class "envRefClass", distance 3.

Fields

- **pointer**: pointer to the internal structure that represent the constructor
- **class_pointer**: pointer to the internal structure that represent the associated C++ class
- **nargs**: Number of arguments the constructor expects
- **signature**: C++ signature of the constructor
- **docstring**: Short description of the constructor

C++Field-class
Class "C++Field"

Description

Metadata associated with a field of a class exposed through Rcpp modules

Fields

- **pointer**: external pointer to the internal (C++) object that represents fields
- **cpp_class**: (demangled) name of the C++ class of the field
- **read_only**: Is this field read only
- **class_pointer**: external pointer to the class this field is from.

Methods

No methods defined with class "C++Field" in the signature.

See Also

The fields slot of the C++Class class is a list of C++Field objects

Examples

```
showClass("C++Field")
```
C++Function-class

Class "C++Function"

Description

Internal C++ function

Objects from the Class

Objects can be created by the Rcpp::InternalFunction class from the Rcpp library

Slots

.Data: R function that calls back to the internal function
pointer: External pointer to a C++ object poiting to the function
docstring: Short documentation for the function
signature: C++ signature

Extends

Class "function", from data part. Class "OptionalFunction", by class "function", distance 2. Class "PossibleMethod", by class "function", distance 2.

Methods

show signature(object = "C++Function"): print the object

Examples

showClass("C++Function")

C++Object-class

C++ internal objects

Description

C++ internal objects instanciated from a class exposed in an Rcpp module

Objects from the Class

This is a virtual class. Actual C++ classes are subclasses.
Methods

$ \text{signature}(x = \text{"C++Object"}): \text{invokes a method on the object, or retrieves the value of a property}$

$\text{<- signature}(x = \text{"C++Object"}): \text{set the value of a property}$

\text{show signature}(\text{object} = \text{"C++Object"}): \text{print the object}$

C++OverloadedMethods-class

\textit{Class "C++OverloadedMethods"}

Description

Set of C++ methods

Extends

Class "\text{envRefClass}"

Fields

\text{pointer}: Object of class \text{externalptr} pointer to the internal structure that represents the set of methods

\text{class_pointer}: Object of class \text{externalptr} pointer to the internal structure that models the related class

compileAttributes

\textit{Compile Rcpp Attributes for a Package}

Description

Scan the source files within a package for attributes and generate code as required. Generates the bindings required to call C++ functions from R for functions adorned with the \text{Rcpp::export} attribute.

Usage

\text{compileAttributes(pkgdir = ".", verbose = getOption("verbose"))}

Arguments

\text{pkgdir} Directory containing the package to compile attributes for (defaults to the current working directory).

\text{verbose} TRUE to print detailed information about generated code to the console.
Details

The source files in the package directory given by pkgdir are scanned for attributes and code is generated as required based on the attributes.

For C++ functions adorned with the \texttt{Rcpp::export} attribute, the C++ and R source code required to bind to the function from R is generated and added (respectively) to src/RcppExports.cpp or R/RcppExports.R. Both of these files are automatically generated from scratch each time \texttt{compiledAttributes} is run.

In order to access the declarations for custom \texttt{Rcpp::as} and \texttt{Rcpp::wrap} handlers the \texttt{compiledAttributes} function will also call any \texttt{inline plugins} available for packages listed in the \texttt{LinkingTo} field of the DESCRIPTION file.

Value

Returns (invisibly) a character vector with the paths to any files that were updated as a result of the call.

Note

The \texttt{compiledAttributes} function deals only with exporting C++ functions to R. If you want the functions to additionally be publicly available from your package’s namespace another step may be required. Specifically, if your package \texttt{NAMESPACE} file does not use a pattern to export functions then you should add an explicit entry to \texttt{NAMESPACE} for each R function you want publicly available.

In addition to exporting R bindings for C++ functions, the \texttt{compiledAttributes} function can also generate a direct C++ interface to the functions using the \texttt{Rcpp::interfaces} attribute.

See Also

\texttt{Rcpp::export, Rcpp::interfaces}

Examples

```r
## Not run:

# Compile attributes for package in the current working dir
compiledAttributes()

## End(Not run)
```

compilerCheck
Check for Minimal (g++) Compiler Version

Description

Helper function to establish minimal compiler versions, currently limited only to g++ which (particularly for older RHEL/CentOS releases) is too far behind current C++11 standards required for some packages.
cppFunction

Usage

 compilerCheck(minVersion = package_version("4.6.0"))

Arguments

 minVersion An object of type package_version, with a default of version 4.6.0

Details

 This function looks up g++ (as well as optional values in the CXX and CXX1X environment variables) in the PATH. For all values found, the output of g++ -v is analyzed for the version string, which is then compared to the given minimal version.

Value

 A boolean value is returned, indicating if the minimal version is being met

Author(s)

 Dirk Eddelbuettel

cppFunction Define an R Function with a C++ Implementation

Description

 Dynamically define an R function with C++ source code. Compiles and links a shared library with bindings to the C++ function then defines an R function that uses .Call to invoke the library.

Usage

 cppFunction(code, depends = character(), plugins = character(), includes = character(),
 env = parent.frame(), rebuild = FALSE, cacheDir = getOption("rcpp.cache.dir",
 tempdir()), showOutput = verbose, verbose = getOption("verbose"))

Arguments

 code Source code for the function definition.
 depends Character vector of packages that the compilation depends on. Each package listed will first be queried for an inline plugin to determine header files to include. If no plugin is defined for the package then a header file based the package's name (e.g. PkgName.h) will be included.
 plugins Character vector of inline plugins to use for the compilation.
 includes Character vector of user includes (inserted after the includes provided by depends).
 env The environment in which to define the R function. May be NULL in which case the defined function can be obtained from the return value of cppFunction.
cppFunction

rebuild
 Force a rebuild of the shared library.

cacheDir
 Directory to use for caching shared libraries. If the underlying code passed to sourceCpp has not changed since the last invocation then a cached version of the shared library is used. The default value of tempdir() results in the cache being valid only for the current R session. Pass an alternate directory to preserve the cache across R sessions.

showOutput = TRUE to print R CMD SHLIB output to the console.

verbose = TRUE to print detailed information about generated code to the console.

Details

Functions defined using cppFunction must have return types that are compatible with Rcpp::wrap and parameter types that are compatible with Rcpp::as.

The shared library will not be rebuilt if the underlying code has not changed since the last compilation.

Value

An R function that uses .Call to invoke the underlying C++ function.

Note

You can also define R functions with C++ implementations using the sourceCpp function, which allows you to separate the C++ code into its own source file. For many use cases this is an easier and more maintainable approach.

See Also

sourceCpp, evalCpp

Examples

Not run:

cppFunction(
 'int fibonacci(const int x) {
 if (x == 0) return(0);
 if (x == 1) return(1);
 return (fibonacci(x - 1)) + fibonacci(x - 2);
 }'
)

cppFunction(depends = "RcppArmadillo",
 'List fastlm(NumericVector yr, NumericMatrix Xr) {
 int n = Xr.nrow(), k = Xr.ncol();
 arma::mat X(Xr.begin(), n, k, false);
 arma::colvec y(yr.begin(), yr.size(), false);
 arma::colvec coef = arma::solve(X, y);
 }')
demangle

c++ type information

Description
demangle gives the demangled type, sizeof its size (in bytes).

Usage
demangle(type = "int", ...)
sizeof(type = "int", ...)

Arguments
type The type we want to demangle
... Further argument for cppFunction

Details
The following function is compiled and invoked:

```c
SEXP demangle_this_type(){  
typedef  
return wrap( DEMANGLE(type) ) ;  
}

SEXP sizeof_this_type(){  
typedef  
```
demangle

 return wrap(sizeof(type)) ;
}

DEMANGLE is a macro in ‘Rcpp’ that does the work.

Value

The demangled type, as a string.

Note

We only know how to demangle with gcc. If you know how to demangle types with your compiler, let us know.

Author(s)

Romain Francois <romain@r-enthusiasts.com>

References

See this chapter from the GNU C++ library manual.

See Also

cppFunction is used to compile the function demangle creates.

Examples

Not run:
demangle("int64_t")
demangle("uint64_t")

demangle("NumericVector")
demangle("std::map<std::string,double>")

sizeof("long")
sizeof("long long")

End(Not run)
dependsAttribute

Description

The Rcpp::depends attribute is added to a C++ source file to indicate that it has a compilation dependency on one or more other packages. For example:

```cpp
// [[Rcpp::depends(RcppArmadillo)]]
```

Arguments

... Packages which the source file depends on for compilation

Details

The Rcpp::depends attribute is used by the implementation of the sourceCpp function to correctly setup the build environment for R CMD SHLIB.

The include directories of the specified packages are added to the CLINK_CPPFLAGS environment variable. In addition, if the referenced package provides an inline plugin it is called to determine additional environment variables required to successfully build.

Note

The Rcpp::depends attribute is specified using a syntax compatible with the new generalized attributes feature of the C++11 standard. Note however that since this feature is not yet broadly supported by compilers it needs to be specified within a comment (see examples below).

See Also

sourceCpp

Examples

```r
## Not run:

// [[Rcpp::depends(RcppArmadillo)]]

// [[Rcpp::depends(Matrix, RcppGSL)]]

## End(Not run)
```
evalcpp

Evaluate a C++ Expression

Description

Evaluates a C++ expression. This creates a C++ function using `cppFunction` and calls it to get the result.

Usage

```r
evalcpp(code, depends = character(), plugins = character(), includes = character(), rebuild = FALSE, cacheDir = getOption("rcpp.cache.dir", tempdir()), showOutput = verbose, verbose = getOption("verbose"))
```

```r
areMacrosDefined(names, depends = character(), includes = character(), rebuild = FALSE, showOutput = verbose, verbose = getOption("verbose"))
```

Arguments

- `code`: C++ expression to evaluate
- `names`: names of the macros we want to test
- `plugins`: see `cppFunction`
- `depends`: see `cppFunction`
- `includes`: see `cppFunction`
- `rebuild`: see `cppFunction`
- `cacheDir`: Directory to use for caching shared libraries. If the underlying code passed to `sourceCpp` has not changed since the last invocation then a cached version of the shared library is used. The default value of `tempdir()` results in the cache being valid only for the current R session. Pass an alternate directory to preserve the cache across R sessions.
- `showOutput`: see `cppFunction`
- `verbose`: see `cppFunction`

Value

The result of the evaluated C++ expression.

Note

The result type of the C++ expression must be compatible with `Rcpp::wrap`.

See Also

`sourceCpp`, `cppFunction`
Examples

```r
## Not run:

evalCcpp("__cplusplus")
evalCcpp("std::numeric_limits<double>::max()")

areMacrosDefined(c("__cplusplus", "HAS_TR1"))

## End(Not run)
```

Description

The `Rcpp::export` attribute is added to a C++ function definition to indicate that it should be made available as an R function. The `sourceCcpp` and `compileAttributes` functions process the `Rcpp::export` attribute by generating the code required to call the C++ function from R.

Arguments

- **name**: Specify an alternate name for the generated R function (optional, defaults to the name of the C++ function if not specified).

Details

Functions marked with the `Rcpp::export` attribute must meet several conditions to be correctly handled:

1. Be defined in the global namespace (i.e. not within a C++ namespace declaration).
2. Have a return type that is either void or compatible with `Rcpp::wrap` and parameter types that are compatible with `Rcpp::as` (see sections 3.1 and 3.2 of the `Rcpp-introduction` vignette for more details).
3. Use fully qualified type names for the return value and all parameters. However, Rcpp types may appear without the namespace qualifier (i.e. `dataframe` is okay as a type name but `std::string` must be specified fully).

If default argument values are provided in the C++ function definition then these defaults are also used for the exported R function. For example, the following C++ function:

```c++
DataFrame readData(
    CharacterVector file,
    CharacterVector exclude = CharacterVector::create(),
    bool fill = true)
```

Will be exported to R as:
function (file, exclude = character(0), fill = TRUE)

Note that C++ rules for default arguments still apply: they must occur consecutively at the end of the function signature and unlike R can’t rely on the values of other arguments.

Note

When a C++ function has export bindings automatically generated by the compileAttributes function, it can optionally also have a direct C++ interface generated using the Rcpp::interfaces attribute.

The Rcpp::export attribute is specified using a syntax compatible with the new generalized attributes feature of the C++11 standard. Note however that since this feature is not yet broadly supported by compilers it needs to be specified within a comment (see examples below).

See Also

sourceCpp and compileAttributes

Examples

Not run:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
int fibonacci(const int x) {
 if (x == 0) return(0);
 if (x == 1) return(1);

 return (fibonacci(x - 1)) + fibonacci(x - 2);
}

// [[Rcpp::export("convolveCpp")]]
NumericVector convolve(NumericVector a, NumericVector b) {
 int na = a.size(), nb = b.size();
 int nab = na + nb - 1;
 NumericVector xab(nab);

 for (int i = 0; i < na; i++)
 for (int j = 0; j < nb; j++)
 xab[i + j] += a[i] * b[j];

 return xab;
}

End(Not run)
Create an Rcpp Module to Expose a C++ Class in R

Description

The arguments specify a C++ class and some combination of constructors, fields and methods to be shared with R by creating a corresponding reference class in R. The information needed in the call to `exposeClass()` is the simplest possible in order to create a C++ module for the class; for example, fields and methods in this class need only be identified by their name. Inherited fields and methods can also be included, but more information is needed. The function writes a C++ source file, containing a module definition to expose the class to R, plus one line of R source to create the corresponding reference class.

Usage

```
exposeClass(class, constructors = , fields = , methods = , file = ,
header = , module = , CppClass = class, readOnly = , rename = ,
Rfile = TRUE)
```

Arguments

class
The name of the class in R. By default, this will be the same as the name of the class in C++, unless argument CppClass is supplied.

constructors
A list of the signatures for any of the class constructors to be called from R. Each element of the list gives the data types in C++ for the arguments to the corresponding constructor. See Details and the example.

fields, methods
The vector of names for the fields and for the methods to be exposed in R. For inherited fields and methods, type information needs to be supplied; see the section “Inherited Fields and Methods”.

file
Usually, the name for the file on which to write the C++ code, by default `paste0(CppClass, "Module.cpp")`. If the current working directory in R is the top-level directory for a package, the function writes the file in the "src" subdirectory. Otherwise the file is written in the working directory.

The argument may also be a connection, already open for writing.

header
Whatever lines of C++ header information are needed to include the definition of the class. Typically this includes a file from the package where we are writing the module definition, as in the example below.

module
The name for the Rcpp module, by default `paste0("class_", CppClass)`.

CppClass
The name for the class in C++. By default and usually, the intended class name in R.

readOnly
Optional vector of field names. These fields will be created as read-only in the interface.
Optional named character vector, used to name fields or methods differently in \(\mathsf{R} \) from their C++ name. The elements of the vector are the C++ names and the corresponding elements of names(rename) the desired names in \(\mathsf{R} \). So `c(.age = "age")` renames the C++ field or method `age` as `.age`.

Controls the writing of a one-line \(\mathsf{R} \) command to create the reference class corresponding to the C++ module information. By default, this will be a file `paste0(class, "class.R")`. If the working directory is an \(\mathsf{R} \) package source directory, the file will be written in the \(\mathsf{R} \) subdirectory, otherwise in the working directory itself.

Supplying a character string substitutes that file name for the default.

The argument may also be a connection open for writing or `FALSE` to suppress writing the \(\mathsf{R} \) source altogether.

The file created by the call to these functions only depends on the information in the C++ class supplied. This file is intended to be part of the C++ source for an \(\mathsf{R} \) package. The file only needs to modified when the information changes, either because the class has changed or because you want to expose different information to \(\mathsf{R} \). In that case you can either recall `exposeClass()` or edit the C++ file created.

The Rcpp Module mechanism has a number of other optional techniques, not covered by `exposeClass()`. These should be entered into the C++ file created. See the “rcpp-modules” vignette with the package for current possibilities.

For fields and methods specified directly in the C++ class, the fields and method arguments to `exposeClass()` are character vectors naming the corresponding members of the class. For module construction, the data types of directly specified fields and of the arguments for the methods are not needed.

For inherited fields or methods, data type information is needed. See the section “Inherited Fields and Methods”.

For exposing class constructors, the module needs to know the signatures of the constructors to be exposed; each signature is a character vector of the corresponding C++ data types.

Nothing, called for its side effect.

If the C++ class inherits from one or more other classes, the standard Rcpp Module mechanism cannot be used to expose inherited fields or methods. An indirect mechanism is used, generating free functions in C++ to expose the inherited members in \(\mathsf{R} \).

This mechanism requires data type information in the call to `exposeClass()`. This is provided by naming the corresponding element of the fields or methods argument with the name of the member. The actual element of the fields argument is then the single data type of the field.

For the methods argument the argument will generally need to be a named list. The corresponding element of the list is the vector of data types for the return value and for the arguments, if any, to the
method. For example, if C++ method foo() took a single argument of type NumericVector and returned a value of type long, the methods argument would be list(foo = c("long", "NumericVector")). See the second example below.

Author(s)
John Chambers

See Also

setRcppClass, which must be called from some R source in the package.

Examples

```r
## Not run:
### Given the following C++ class, defined in file PopBD.h,
### the call to exposeClass() shown below will write a file
### src/PopBDModule.cpp containing a corresponding module definition.
### class PopBD {
###   public:
###     PopBD(void);
###     PopBD(NumericVector initBirth, NumericVector initDeath);
###     std::vector<double> birth;
###     std::vector<double> death;
###     std::vector<int> lineage;
###     std::vector<long> size;
###     void evolve(int);
###   };
### A file R/PopBDClass.R will be written containing the one line:
### PopBD <- setRcppClass("PopBD")
###
### The call below exposes the lineage and size fields, read-only,
### and the evolve() method.

exposeClass("PopBD",
            constructors =
                list("", c("NumericVector", "NumericVector")),
            fields = c("lineage", "size"),
            methods = "evolve",
            header = "#include "PopBD.h",
            readOnly = c("lineage", "size")

### Example with inheritance: the class PopCount inherits from
### the previous class, and adds a method table(). It has the same
### constructors as the previous class.
### To expose the table() method, and the inherited evolve() method and size field:

exposeClass("PopCount",
            constructors =
                list("", c("NumericVector", "NumericVector")),
```
forms <- methods

Set the formal arguments of a C++ function

Description

Set the formal arguments of a C++ function

Methods

signature(fun = "C++Function") Set the formal arguments of a C++ function

interfacesAttribute Rcpp::interfaces Attribute

Description

The Rcpp::interfaces attribute is added to a C++ source file to specify which languages to generate bindings for from exported functions. For example:

// [[[Rcpp::interfaces(r, cpp)]]]

Arguments

... Interfaces to generate for exported functions within the source file. Valid values are r and cpp, and more than one interface can be specified.

Details

The Rcpp::interfaces attribute is used to determine which bindings to generate for exported functions. The default behavior if no Rcpp::interfaces attribute is specified is to generate only an R interface.

When cpp bindings are requested code is generated as follows:

1. Bindings are generated into a header file located in the inst/include directory of the package using the naming convention PackageName_RcppExports.h
2. If not already present, an additional header file named PackageName.h is also generated which in turn includes the Rcpp exports header.

In the case that you already have a PackageName.h header for your package then you can manually add an include of the Rcpp exports header to it to make the exported functions available to users of your package.
3. The generated header file allows calling the exported C++ functions without any linking dependency on the package (this is based on using the R_RegisterCCallable and R_GetCCallable functions).

4. The exported functions are defined within a C++ namespace that matches the name of the package.

For example, an exported C++ function foo could be called from package MyPackage as follows:

```c++
// [[Rcpp::depends(MyPackage)]]
#include <MyPackage.h>

void foo() {
  MyPackage::bar();
}
```

The above example assumes that the sourceC++ function will be used to compile the code. If rather than that you are building a package then you don’t need to include the Rcpp::depends attribute, but instead should add an entry for the referenced package in the Depends and LinkingTo fields of your package’s DESCRIPTION file.

Note

If a file by the name of PackageName.h that wasn’t generated by compileAttributes already exists in the inst/include directory then it will not be overwritten (rather, an error will occur).

A static naming scheme for generated header files and namespaces is used to ensure consistent usage semantics for clients of exported C++ interfaces. Packages that wish to export more complex interfaces or additional C++ types are therefore typically better off not using this mechanism.

The Rcpp::interfaces attribute is specified using a syntax compatible with the new generalized attributes feature of the C++11 standard. Note however that since this feature is not yet broadly supported by compilers it needs to be specified within a comment (see examples below).

See Also

compileAttributes, Rcpp::export, Rcpp::depends

Examples

```c++
## Not run:

// [[Rcpp::interfaces(r, cpp)]]

## End(Not run)


## ldflags-deprecated

### Deprecated Rcpp Linker Flags

**Description**

In Rcpp versions prior to release 0.10.1 of November 2013, `ldflags` and `RcppLdFlags` were used to return the required flags and options for the system linker to link to the Rcpp user library. Since we no longer build or ship a user library, these functions now return an empty string. As of Rcpp release 0.12.19, these functions are now deprecated.

**Usage**

```r
LdFlags()
RcppLdFlags()
```

**Value**

An empty string.

**Author(s)**

Dirk Eddelbuettel and Romain Francois

**References**


## loadModule

### Load an Rcpp Module into a Package

**Description**

One or more calls to `loadModule` will be included in the source code for a package to load modules and optionally expose objects from them. The actual extraction of the module takes place at load time.

**Usage**

```r
loadModule(module, what = , loadNow, env =)
```
loadModule

Arguments

module
The name of the C++ module to load. The code for the module should be in the same package as the R call to loadModule.

what
The objects to expose in the package’s namespace corresponding to objects in the module. By default, nothing is exposed.

The special value TRUE says to load all the objects in the module that have syntactically standard R names (which all objects in a module will normally have). Otherwise, if supplied this should be a character vector, the elements being objects defined in the module. The vector can have a names attribute, in which case the non-empty names will be used to rename the objects; otherwise, the name of the object in the package namespace will be the same as the name in the C++ module.

loadNow, env
A logical flag to say whether the load actions should happen now, and the environment into which the objects should be inserted. When called from the source of a package, both of these arguments should usually be omitted.

The value of loadNow will be set by checking the module’s status. At package installation time, the module cannot be started, in which case a load action (see setLoadAction) is scheduled to do the actual module load.

The value of env will default to the package’s namespace.

Details

If the purpose of loading the module is to define classes based on C++ classes, see setRcppClass(), which does the necessary module loading for you.

When the module can be started (at namespace load time), the function Module() returns an environment with a description of the module’s contents. Function loadModule() saves this as a metadata object in the package namespace. Therefore multiple calls to loadModule() are an efficient way to extract different objects from the module.

Requesting an object that does not exist in the module produces a warning.

Since assignments from the call cannot take place until namespace loading time, any computations using the objects must also be postponed until this time. Use load actions (setLoadAction) and make sure that the load action is specified after the call to loadModule().

Value

If the load takes place, the module environment is returned. Usually however the function is called for its side effects.

Note

This function requires version 2.15.0 of R or later, in order to use load actions, introduced in that version. See the note in the help page for setRcppClass() for details.

Author(s)

John Chambers
See Also

setRcppClass() to avoid the explicit call.
loadRcppModules() for a (deprecated) shotgun procedure to load all modules.

Examples

## Not run:
loadModule("yada", TRUE) # load all the objects from module "yada"

## End(Not run)

loadRcppModules-deprecated

Loads Rcpp modules on package startup

Description

*Note: As of release 0.12.5, this function is deprecated; loadModule should be used instead.*

Function to simplify loading Rcpp modules contained in a package. This function must be called from the `.onLoad` function of a package. It uses the `RcppModules` field of the package DESCRIPTION file to query the names of the modules that the package should export, loads each module, and `populate` each module into the package NAMESPACE.

Usage

loadRcppModules(direct=TRUE)

Arguments

direct if TRUE the content of the module is exposed in the namespace. Otherwise, the module is exposed.

See Also

populate, loadModule
Module

Retrieves an Rcpp module

Description

Retrieves an Rcpp module from a dynamic library, usually associated with a package.

Usage

Module(module, PACKAGE = , where = , mustStart = )

Arguments

module Name of the module, as declared in the RCPP_MODULE macro internally
PACKAGE Passed to getNativeSymbolInfo
where When the module is loaded, S4 classes are defined based on the internal classes. This argument is passed to setClass
mustStart TODO

Value

An object of class Module collecting functions and classes declared in the module.

Module-class Rcpp modules

Description

Collection of internal c++ functions and classes exposed to R

Objects from the Class

modules are created by the link{Module} function

Methods

$ signature(x = "Module"): extract a function or a class from the module.
prompt signature(object = "Module"): generates skeleton of a documentation for a Module.
show signature(object = "Module"): summary information about the module.
initialize signature(.Object = "Module"): ...

See Also

The Module function
The `Rcpp::plugins` attribute is added to a C++ source file to specify the inline plugins that should be used in the compilation.

```cpp
// [[Rcpp::plugins(plugin1, plugin2)]]
```

**Arguments**

... Plugins to add to the compilation.

**Details**

Plugins must be registered using the `registerPlugin` function.

When included within a `sourceCpp` translation unit, the configuration-related fields of the plugin (e.g. env and LinkingTo) are utilized, however the code-generation fields (e.g. includes and body) are not.

**Note**

`Rcpp` includes a built-in `cpp11` plugin that adds the flags required to enable C++11 features in the compiler.

**See Also**

`registerPlugin`

**Examples**

```r
Not run:

// [[Rcpp::plugins(cpp11)]]

// [[Rcpp::export]]
int useCcpp11() {
 auto x = 10;
 return x;
}

End(Not run)
```
**populate**  
*Populates a namespace or an environment with the content of a module*

**Description**

Populates a namespace or an environment with the content of a module.

**Usage**

`populate(module, env)`

**Arguments**

- `module`: Rcpp module
- `env`: environment or namespace

---

**Rcpp-deprecated**  
*Deprecated Functions in the Rcpp Package*

**Description**

These functions are provided for compatibility with older versions of the `Rcpp` package only, and may be removed in future versions.

**Details**

- `loadRcppModules` calls should now be replaced by `loadModule` calls, one per Module.
- `LdFlags` and `RcppLdFlags` are no longer required as no library is provided (or needed) by Rcpp (as it was up until release 0.10.1).

**Author(s)**

Dirk Eddelbuettel and Romain Francois
Rcpp.package.skeleton  
Create a skeleton for a new package depending on Rcpp

Description

Rcpp.package.skeleton automates the creation of a new source package that intends to use features of Rcpp.

It is based on the package.skeleton function which it executes first.

Usage

Rcpp.package.skeleton(name = "anRpackage", list = character(),
environment = .GlobalEnv, path = ".", force = FALSE,
code_files = character(), cpp_files = character(),
example_code = TRUE, attributes = TRUE, module = FALSE,
author = "Your Name",
maintainer = if(missing( author)) "Your Name" else author,
email = "your@email.com",
license = "GPL (>= 2)"
)

Arguments

name  See package.skeleton
list  See package.skeleton
environment  See package.skeleton
path  See package.skeleton
force  See package.skeleton
code_files  See package.skeleton
cpp_files  A character vector with the paths to C++ source files to add to the package.
example_code  If TRUE, example c++ code using Rcpp is added to the package.
attributes  If TRUE, example code makes use of Rcpp attributes.
module  If TRUE, an example Module is added to the skeleton.
author  Author of the package.
maintainer  Maintainer of the package.
email  Email of the package maintainer.
license  License of the package.
Details

In addition to `package.skeleton`

- The `DESCRIPTION` file gains an Imports line requesting that the package depends on Rcpp and a LinkingTo line so that the package finds Rcpp header files.
- The `NAMESPACE` gains a `useDynLib` directive as well as an `importFrom(Rcpp, evalCpp)` to ensure instantiation of Rcpp.
- The `src` directory is created if it does not exist.

If `cpp_files` are provided then they will be copied to the `src` directory.

If the `example_code` argument is set to TRUE, example files `rcpp_hello_world.h` and `rcpp_hello_world.cpp` are also created in the `src`. An R file `rcpp_hello_world.R` is expanded in the `R` directory, the `rcpp_hello_world` function defined in this files makes use of the C++ function `rcpp_hello_world` defined in the C++ file. These files are given as an example and should eventually be removed from the generated package.

If the `attributes` argument is TRUE, then rather than generate the example files as described above, a single `rcpp_hello_world.cpp` file is created in the `src` directory and it's attributes are compiled using the `compileAttributes` function. This leads to the files `RcppExports.R` and `RcppExports.cpp` being generated. They are automatically regenerated from scratch each time `compileAttributes` is called. Therefore, one should not modify by hand either of the `RcppExports` files.

If the `module` argument is TRUE, a sample Rcpp module will be generated as well.

Value

Nothing, used for its side effects

References

Read the *Writing R Extensions* manual for more details.

Once you have created a source package you need to install it: see the *R Installation and Administration* manual, `INSTALL` and `install.packages`.

See Also

`package.skeleton`

Examples

```r
Not run:
simple package
Rcpp.package.skeleton("foobar")

package using attributes
Rcpp.package.skeleton("foobar", attributes = TRUE)

package with a module
Rcpp.package.skeleton("testmod", module = TRUE)
```
Rcpp.plugin.maker

Facilitating making package plugins

Description

This function helps packages making inline plugins.

Usage

Rcpp.plugin.maker(
  include.before = "", 
  include.after = "", 
  LinkingTo = unique(c(package, "Rcpp")), 
  Depends = unique(c(package, "Rcpp")), 
  Imports = unique(c(package, "Rcpp")), 
  libs = "", 
  Makevars = NULL, 
  Makevars.win = NULL, 
  package = "Rcpp"
)

Arguments

include.before  Code to be included before the `Rcpp.h` file
include.after   Code to be included after the `Rcpp.h` file
LinkingTo       Packages to be added to the `LinkingTo` field
Depends         Packages to be added to the `Depends` field [deprecated]
Imports         Packages to be added to the `Depends` field
libs            library flags
Makevars        content for a `Makevars` file, or NULL
Makevars.win    content for a `Makevars.win` file, or NULL
package         The package this plugin is for.

Value

A function that is suitable as a plugin. See for example the `RcppArmadillo` package that uses this to create its inline plugin.
**RcppUnitTests**  
*Rcpp : unit tests results*

**Description**

Unit tests results for package Rcpp.

Unit tests are run automatically at build time and reports are included in the ‘doc’ directory as html or text.

**See Also**

**Examples**

```r
grep(r"^runTests\.", list.files(system.file("unitTests", package = "Rcpp"), pattern = "^runit", full = TRUE))
```

```r
trigger the unit tests preparation, follow printed instructions
on how to run them
Not run:
source(system.file("unitTests", "runTests.R", package = "Rcpp"))
```

**registerPlugin**  
*Register an inline plugin*

**Description**

Register an inline plugin for use with sourceCpp or cppFunction. Inline plugins are functions that return a list with additional includes, environment variables, and other compilation context.

**Usage**

```r
registerPlugin(name, plugin)
```

**Arguments**

- `name`: Name of the inline plugin
- `plugin`: Inline plugin function

**Details**

Plugins can be added to sourceCpp compilations using the Rcpp::plugins attribute.
See Also

Rcpp::plugins

---

**setRcppClass**

*Create a Class Extending a C++ Class*

**Description**

These routines create a class definition in R for an exposed C++ class, setting up and executing a load action to incorporate the C++ pointer information. Neither function should normally need to be called directly; for most applications, a call to `exposeClass()` will create both C++ and R code files to expose the C++ class.

**Usage**

```r
setRcppClass(Class, CppClass = , module = , fields = list(), contains = ,
 methods = , saveAs = Class, where = , ...)
loadRcppClass(Class, CppClass = , module = , fields = character(),
 contains = character(),
 methods = , saveAs = Class, where = , ...)
```

**Arguments**

- **Class**
  The name for the new class.

- **CppClass**
  The C++ class defined in the C++ code for the package that this class extends. By default, the same as `Class`.

- **module**
  The Rcpp module in which the class is defined. The module does not have to be loaded separately; `setRcppClass()` will arrange to load the module. By default, "class" followed by the C++ class name. If `exposeClass()` has been called, the necessary module code will have been written in the `src` directory of the package.

- **fields, contains, methods**
  Additional fields, superclasses and method definitions in R that extend the C++ class. These arguments are passed on to `setRefClass()`.

- **saveAs**
  Save a generator object for the class in the package's namespace under this name. By default, the generator object has the name of the class. To avoid saving any generator object, supply this argument as `NULL`. (This argument is currently needed because the actual class definition must take place at package load time, to include C++ pointer information. Therefore the value returned by `setRcppClass()` when called during package installation is not the generator object returned by `setRefClass()`. We may be able to hack around this problem in the future.)

- **where**
  The environment in which to save the class definition. By default, will be the namespace of the package in which the `setRcppClass()` call is included.

- **...**
  Arguments, if any, to pass on to `setRefClass()`.
**Details**

The call to these functions normally appears in the source code for a package; in particular, a call is written in an R source file when `exposeClass()` is called.

R code for this class or (preferably) a subclass can define new fields and methods for the class. Methods for the R class can refer to methods and fields defined in C++ for the C++ class, if those have been exposed.

The fields and methods defined can include overriding C++ fields or methods. Keep in mind, however, that R methods can refer to C++ fields and methods, but not the reverse. If you override a C++ field or method, you essentially need to revise all code that refers to that field or method. Otherwise, the C++ code will continue to use the old C++ definition.

**Value**

At load time, a generator for the new class is created and stored according to the `saveAs` argument, typically under the name of the class.

The value returned at installation time is a dummy. Future revisions of the function may allow us to return a valid generator at install time. We recommend using the standard style of assigning the value to the name of the class, as one would do with `setRefClass`.

**Note**

This function and function `loadModule()` require version 2.15.0 of R or later, in order to use load actions, introduced in that version.

A subtle way this can fail is by somehow loading a legitimate binary version of your package (installed under a valid version of R) into a session with an older R. In this case the load actions created in the binary package will simply not be called. None of the modules will be loaded and none of the classes created.

If your symptom is that classes or other objects from modules don’t exist, check the R version.

**Author(s)**

John Chambers

**Examples**

```r
Not run:
setRcppClass("World",
 module = "yada",
 fields = list(more = "character"),
 methods = list(
 test = function(what) message("Testing: ", what, "; ", more)),
 saveAs = "genWorld"
)
End(Not run)
```
sourceCpp parse the specified C++ file or source code and looks for functions marked with the 
Rcpp::export attribute and RCPP_MODULE declarations. A shared library is then built and its 
extported functions and Rcpp modules are made available in the specified environment.

Usage

sourceCpp(file = "", code = NULL, env = globalenv(), embeddedR = TRUE, rebuild = FALSE, 
cacheDir = getOption("rcpp.cache.dir", tempdir()), cleanupCacheDir = FALSE, 
showOutput = verbose, verbose = getOption("verbose"), dryRun = FALSE)

Arguments

file
A character string giving the path name of a file

code
A character string with source code. If supplied, the code is taken from this string instead of a file.

env
Environment where the R functions and modules should be made available.

embeddedR
TRUE to run embedded R code chunks.

rebuild
Force a rebuild of the shared library.

cacheDir
Directory to use for caching shared libraries. If the underlying file or code passed to sourceCpp has not changed since the last invocation then a cached version of the shared library is used. The default value of tempdir() results in the cache being valid only for the current R session. Pass an alternate directory to preserve the cache across R sessions.

cleanupCacheDir
Cleanup all files in the cacheDir that were not a result of this compilation. Note that this will cleanup the cache from all other calls to sourceCpp with the same cacheDir. This option should therefore only be specified by callers that provide a unique cacheDir per scope (e.g. chunk labels in a weaved document).

showOutput
TRUE to print R CMD SHLIB output to the console.

verbose
TRUE to print detailed information about generated code to the console.

dryRun
TRUE to do a dry run (showing commands that would be used rather than actually executing the commands).

Details

If the code parameter is provided then the file parameter is ignored.

Functions exported using sourceCpp must meet several conditions, including being defined in the global namespace and having return types that are compatible with Rcpp::wrap and parameter types that are compatible with Rcpp::as. See the Rcpp::export documentation for more details.
Content of Rcpp Modules will be automatically loaded into the specified environment using the `Module` and `populate` functions.

If the source file has compilation dependencies on other packages (e.g. `Matrix`, `RcppArmadillo`) then an `Rcpp::depends` attribute should be provided naming these dependencies.

It’s possible to embed chunks of R code within a C++ source file by including the R code within a block comment with the prefix of `/**/ R`. For example:

```
/**/ R

Call the fibonacci function defined in C++
fibonacci(10)

*/
```

Multiple R code chunks can be included in a C++ file. R code is sourced after the C++ compilation is completed so all functions and modules will be available to the R code.

**Value**

Returns (invisibly) a list with two elements:

- `functions` Names of exported functions
- `modules` Names of Rcpp modules

**Note**

The `sourceCpp` function will not rebuild the shared library if the source file has not changed since the last compilation.

The `sourceCpp` function is designed for compiling a standalone source file whose only dependencies are R packages. If you are compiling more than one source file or have external dependencies then you should create an R package rather than using `sourceCpp`. Note that the `Rcpp::export` attribute can also be used within packages via the `compileAttributes` function.

If you are sourcing a C++ file from within the `src` directory of a package then the package’s `LinkingTo` dependencies, `inst/include`, and `src` directories are automatically included in the compilation.

If no `Rcpp::export` attributes or `RCPP_MODULE` declarations are found within the source file then a warning is printed to the console. You can disable this warning by setting the `rcpp.warnNoExports` option to `FALSE`.

**See Also**

- `Rcpp::export`, `Rcpp::depends`, `cppFunction`, `evalCpp`

**Examples**

```
Not run:
```
sourceCpp("fibonacci.cpp")

sourceCpp(code='
#include <Rcpp.h>

// [[Rcpp::export]]
int fibonacci(const int x) {
  if (x == 0) return(0);
  if (x == 1) return(1);
  return (fibonacci(x - 1)) + fibonacci(x - 2);
}
')

## End(Not run)
Index

*Topic classes
  C++Class-class, 4
  C++Constructor-class, 5
  C++Field-class, 5
  C++Function-class, 6
  C++Object-class, 6
  C++OverloadedMethods-class, 7
  exposeClass, 17
  Module-class, 25
  setRcppClass, 32

*Topic interface
  ldflags-deprecated, 22
  loadRcppModules-deprecated, 24
  Rcpp-deprecated, 27
  Rcpp-package, 2
  Rcpp.plugin-maker, 30

*Topic manip
  populate, 27

*Topic methods
  .DollarNames-methods, 4
  formals<-methods, 20

*Topic programming
  demangle, 11
  exposeClass, 17
  ldflags-deprecated, 22
  loadModule, 22
  Module, 25
  Rcpp-deprecated, 27
  Rcpp-package, 2
  Rcpp.package.skeleton, 28
  RcppUnitTestTests, 31
  .DollarNames,ANY-method
    (.DollarNames-methods), 4
  .DollarNames,C++Object-method
    (.DollarNames-methods), 4
  .DollarNames,Module-method
    (.DollarNames-methods), 4
  .DollarNames-methods, 4
  .environment, 5, 7
  $.C++Class-method(C++Class-class), 4
  $.C++Object-method(C++Object-class), 6
  $.Module-method(Module-class), 25
  $<-,C++Object-method(C++Object-class), 6
  areMacrosDefined(evalCpp), 14
  C++Class, 5
  C++Class-class, 4
  C++Constructor, 4
  C++Constructor-class, 5
  C++Field, 4
  C++Field-class, 5
  C++Function-class, 6
  C++Object-class, 6
  C++OverloadedMethods, 4
  C++OverloadedMethods-class, 7
  compileAttributes, 7, 15, 16, 21, 29, 35
  compilerCheck, 8
  cppFunction, 9, 11, 12, 14, 31, 35
  demangle, 11
  dependsAttribute, 13
  environment, 5, 7, 9
  envRefClass, 5, 7
  evalCpp, 10, 14, 35
  exportAttribute, 15
  exposeClass, 17, 32, 33
  formals<-methods, 20
  formals<-,C++Function-method
    (formals<-methods), 20
  function, 6
  getNativeSymbolInfo, 25
  initialize,Module-method
    (Module-class), 25
  inline plugin, 9, 13, 31
inline plugins, 8, 9, 26
INSTALL, 29
install.packages, 29
interfacesAttribute, 20

LdFlags, 27
LdFlags (LdFlags-deprecated), 22
LdFlags-deprecated, 22
loadModule, 22, 24, 27, 33
loadRcppClass (setRcppClass), 32
loadRcppModules, 24, 27
loadRcppModules
   (loadRcppModules-deprecated), 24
loadRcppModules-deprecated, 24

Module, 4, 23, 25, 28, 35
Module-class, 25

OptionalFunction, 6

package.skeleton, 28, 29
pluginsAttribute, 26
populate, 24, 27, 35
PossibleMethod, 6
print.bytes (demangle), 11
prompt, Module-method (Module-class), 25

Rcpp (Rcpp-package), 2
Rcpp-deprecated, 27
Rcpp-package, 2
Rcpp.package.skeleton, 28
Rcpp.plugin.make, 30
Rcpp::depends, 21, 35
Rcpp::export, 8, 21, 34, 35
Rcpp::interfaces, 8, 16
Rcpp::plugins, 31, 32
RcppClass-class (setRcppClass), 32
RcppLdFlags, 27
RcppLdFlags (LdFlags-deprecated), 22
RcppUnitTests, 31
refClass, 5, 7
refObject, 5, 7
registerPlugin, 26, 31

setClass, 25
setLoadAction, 23
setRcppClass, 19, 23, 24, 32
setRefClass, 32, 33
show, C++Class-method (C++Class-class), 4

show, C++Function-method
   (C++Function-class), 6
show, C++Object-method
   (C++Object-class), 6
show, Module-method (Module-class), 25
sizeof (demangle), 11
sourceCpp, 10, 13–16, 26, 31, 34