Package ‘GSM’

July 8, 2015

Title Gamma Shape Mixture
Version 1.3.2
Date 2015-07-06
Description Implementation of a Bayesian approach for estimating a mixture of gamma distributions in which the mixing occurs over the shape parameter. This family provides a flexible and novel approach for modeling heavy-tailed distributions, it is computationally efficient, and it only requires to specify a prior distribution for a single parameter.

Author Sergio Venturini
Maintainer Sergio Venturini <sergio.venturini@unibocconi.it>
Depends gtools, methods, utils
Imports graphics, grDevices, stats
License GPL (>= 2)
URL http://projecteuclid.org/euclid.aos/1215118537
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2015-07-08 00:27:06

R topics documented:

GSM-package ... 2
allcurves.q ... 2
estim.gsm ... 3
estim.gsm_theta ... 4
gsm-class ... 6
GSMDist ... 7
plot-methods .. 8
predict-methods ... 9
summary-methods .. 10

Index 12
GSM-package
Estimation of a Gamma Shape Mixture Model

Description

This package implements a Bayesian approach for estimation of a mixture of gamma distributions in which the mixing occurs over the shape parameter. This family provides a flexible and novel approach for modeling heavy-tailed distributions, it is computationally efficient, and it only requires to specify a prior distribution for a single parameter. See Venturini et al. (2008).

Author(s)

Sergio Venturini <sergio.venturini@unibocconi.it>

References

See Also

`estim.gsm`, `estim.gsm_theta`.

allcurves.q
Utility Function

Description

Utility function for plotting a Gamma Shape Mixture Model density.

Usage

```r
allcurves.q(post, perc)
```

Arguments

- `post` : matrix containing of a mixture’s density posterior draws.
- `perc` : percentile, a value that satisfies 0 < perc < 1.

Details

This is a utility function used to generate the credibility bands for a Gamma Shape Mixture density within `plot`.
estim.gsm

Author(s)
Sergio Venturini <sergio.venturini@unibocconi.it>

See Also
plot-methods.

estim.gsm Estimation of a Gamma Shape Mixture Model (GSM) with collapsing

Description
This function provides the inferential algorithm to estimate a mixture of gamma distributions in which the mixing occurs over the shape parameter. It implements the collapsing approach for the GSM model, as discussed in Venturini et al. (2008).

Usage
estim.gsm(y, J, G = 100, M = 600, a, b, alpha, init = list(rep(1 / J, J), NA, rep(1, N)))

Arguments
y vector of data.
J number of mixture components.
G number of points where to evaluate the GSM density.
M number of MCMC runs.
a hyperparameter of the rate parameter prior distribution.
b hyperparameter of the rate parameter prior distribution.
alpha hyperparameter of the mixture’s weights prior distribution.
init initialization values.

Details
Suggestions on how to choose J, a and b are provided in Venturini et al. (2008). In that work the alpha vector is always set at (1/J,...,1/J), but here one is free to choose the value of the generic element of alpha.

Value
estim.gsm returns an object of class "gsm", which is a list with the following components:
fdens matrix containing the posterior draws for the mixture’s density.
theta vector containing the posterior draws for the mixture’s rate parameter.
weight matrix containing the posterior draws for the mixture’s weights.
label matrix containing the posterior draws for the mixture’s labels.
data vector of data.
estim.gsm_theta

Estimation of a Gamma Shape Mixture Model (GSM)

Description

This function provides the inferential algorithm to estimate a mixture of gamma distributions in which the mixing occurs over the shape parameter. It implements the standard approach for the GSM model, as discussed in Venturini et al. (2008).

Usage

```r
estim.gsm_theta(y, J, G = 100, M = 600, a, b, alpha, init = list(rep(1/J, J), J/max(y), rep(1, N)))
```

Arguments

- `y` vector of data.
- `J` number of mixture components.
- `G` number of points where to evaluate the GSM density.
- `M` number of MCMC runs.
- `a` hyperparameter of the rate parameter prior distribution.

Examples

```r
## Not run:
set.seed(2040)
y <- rgsm(500, c(.1, .3, .4, .2), 1)
burnin <- 100
mcmcsim <- 500
J <- 250
gsm.out <- estim.gsm(y, J, 300, burnin + mcmcsim, 6500, 340, 1/J)
summary(gsm.out, plot = TRUE, start = (burnin + 1))
plot(gsm.out, ndens = 0, nbin = 20, histogram = TRUE, start = (burnin + 1))
## End(Not run)
```

References

estim.gsm_theta

b hyperparameter of the rate parameter prior distribution.
alpha hyperparameter of the mixture’s weights prior distribution.
init initialization values.

Details

Suggestions on how to choose J, a and b are provided in Venturini et al. (2008). In that work the alpha vector is always set at (1/J,...,1/J), but here one is free to choose the value of the generic element of alpha.

Value

estim.gsm_theta returns an object of class "gsm", which is a list with the following components:

fdens matrix containing the posterior draws for the mixture’s density.
theta vector containing the posterior draws for the mixture’s rate parameter.
weight matrix containing the posterior draws for the mixture’s weights.
label matrix containing the posterior draws for the mixture’s labels.
data vector of data.

Author(s)

Sergio Venturini <sergio.venturini@unibocconi.it>

References

See Also

estim.gsm, summary-methods, plot-methods.

Examples

Not run:
set.seed(2840)
y <- rggsm(500, c(.1, .3, .4, .2), 1)
burnin <- 100
mcmcsim <- 500
J <- 250
gsm.out <- estim.gsm_theta(y, J, 300, burnin + mcmcsim, 6500, 340, 1/J)
summary(gsm.out, plot = TRUE, start = (burnin + 1))
plot(gsm.out, ndens = 0, nbins = 20, histogram = TRUE, start = (burnin + 1))
End(Not run)
gsm-class

Class "gsm". Result of Gamma Shape Mixture Estimation.

Description
This class encapsulates results of a Gamma Shape Mixture estimation procedure.

Objects from the Class
Objects can be created by calls of the form `new("gsm", fdens, theta, weight, data)`, but most often as the result of a call to `estim_gsm` or `estim_gsm_theta`.

Slots
- `fdens`: Object of class "matrix"; posterior draws from the MCMC simulation algorithm of the Gamma Shape Mixture density.
- `theta`: Object of class "numeric"; posterior draws from the MCMC simulation algorithm of the Gamma Shape Mixture scale parameter.
- `weight`: Object of class "matrix"; posterior draws from the MCMC simulation algorithm of the Gamma Shape Mixture weights.
- `label`: Object of class "matrix"; posterior draws from the MCMC simulation algorithm of the Gamma Shape Mixture labels.
- `data`: Object of class "numeric"; original data.

Methods
- `plot` signature(x = "gsm", y = "missing"): Plot Gamma Shape Mixture estimate.
- `predict` signature(object = "gsm"): Estimate of the Gamma Shape Mixture upper tail.
- `summary` signature(object = "gsm"): Generate object summary.

Author(s)
Sergio Venturini <sergio.venturini@unibocconi.it>

References

See Also
`estim.gsm`, `summary-methods`, `plot-methods`, `predict-methods`, `summary-methods`
Description

Function evaluations for a Gamma Shape Mixture Model.

Usage

dgsm(x, weight, rateparam)
pgsm(q, weight, rateparam, lower.t = TRUE)
rgsm(n, weight, rateparam)
qgsm(p, x = NULL, weight, rateparam, alpha = .05, br = c(0, 1000), lower.t = TRUE)

Arguments

x, q
vector of quantiles.

n
number of observations.

p
vector of probabilities.

weight
vector of mixture weights.

rateparam
reciprocal of the shape parameter, as in GammaDist.

alpha
outside the interval (alpha, 1 - alpha) the quantiles are found by searching for the root of \(F(x) - p = 0 \).

br
a vector containing the end-points of the interval to be searched for the root.

lower.t
logical; if TRUE (default), probabilities are \(P[X <= x] \) otherwise, \(P[X > x] \).

Details

The parametrisation implemented in this function is described in Venturini et al. (2008).

Value

dgsm gives the density, pgsm gives the distribution function, qgsm gives the quantile function, and rgsm generates random deviates.

Author(s)

Sergio Venturini <sergio.venturini@unibocconi.it>

References

plot-methods

Plot of a Gamma Shape Mixture Model

Description

plot method for class "gsm". This function plots the output of a Gamma Shape Mixture estimation procedure.

Usage

```r
## S4 method for signature 'gsm,missing'
plot(x, ndens = 5, xlab = "x", ylab = "density", nbin = 10,
     histogram = FALSE, bands = FALSE, confid = .95, start = 1, ...)
```

Arguments

- `x`: object of class "gsm"; a list returned by the `estim.gsm` or `estim.gsm_theta` functions.
- `ndens`: number of simulated density curves to plot.
- `xlab`: a title for the x axis.
- `ylab`: a title for the y axis.
- `nbin`: number of bins for the histogram.
- `histogram`: logical; if TRUE the histogram is plotted on the figure.
- `bands`: logical; if TRUE the 95% credibility bands are overimposed on the density graph.
- `confid`: confidence level for the pointwise credibility bands around the density estimate.
- `start`: MCMC run to start from.
- `...`: further arguments passed to or from other methods.

Details

To produce a standard histogram with the estimated density curve superimposed on it, simply set `ndens` to 0 and `histogram` to TRUE.

Value

List with the following components:

- `xval`: horizontal coordinates.
- `yval`: vertical coordinates (pointwise density posterior means).

See Also

dgamma, pgamma, rgamma, uniroot.
Author(s)

Sergio Venturini <sergio.venturini@unibocconi.it>

References

See Also

estim.gsm, estim.gsm_theta, summary-methods, predict-methods.

Examples

```r
set.seed(2040)
y <- rgsm(500, c(.1, .3, .4, .2), 1)
burnin <- 5
mcmcsim <- 10
J <- 250
gsm.out <- estim.gsm(y, J, 300, burnin + mcmcsim, 6500, 340, 1/J)
par(mfrow = c(3, 2))
plot(gsm.out)
plot(gsm.out, ndens = 0, nbin = 20, start = (burnin + 1))
plot(gsm.out, ndens = 0, nbin = 20, histogram = TRUE, start = (burnin + 1))
plot(gsm.out, ndens = 5, nbin = 20, histogram = TRUE, bands = TRUE, start = (burnin + 1))
plot(gsm.out, ndens = 0, nbin = 20, bands = TRUE, start = (burnin + 1))
```

Description

predict method for class "gsm". This function allows to estimate the tail probability of a Gamma Shape Mixture Model using the output of the estim.gsm or estim.gsm_theta procedures.

Usage

```r
## S4 method for signature 'gsm'
predict(object, thresh, start = 1, ...)
```

Arguments

- **object**: object of class "gsm"; a list returned by the estim.gsm or estim.gsm_theta functions.
- **thresh**: threshold value.
- **start**: MCMC run to start from.
- **...**: further arguments passed to or from other methods.
Details

The tail probability is estimated by applying the standard Rao-Blackwellized estimator on the Gibbs sampling realizations obtained through the `estim.gsm` or `estim.gsm_theta` procedures.

Value

A numerical vector containing the posterior draws for the tail probability exceeding the value of `thresh`.

Author(s)

Sergio Venturini <sergio.venturini@unibocconi.it>

References

See Also

`estim.gsm`, `estim.gsm_theta`, `predict-methods`, `plot-methods`.

Examples

```r
set.seed(2040)
y <- rgsm(500, c(.1, .3, .4, .2), 1)
burnin <- 5
mcmcsim <- 10
J <- 250
gsm.out <- estim.gsm(y, J, 300, burnin + mcmcsim, 6500, 340, 1/J)
thresh <- c(0.1, 0.5, 0.75, 1, 2)
tail.prob.est <- tail.prob.true <- rep(NA, length(thresh))
for (i in 1:length(thresh)){
  tail.prob.est[i] <- mean(predict(gsm.out, thresh[i]))
  tail.prob.true[i] <- sum(y > thresh[i])/length(y)
}
qqplot(tail.prob.true, tail.prob.est, main = "Q-Q plot of true vs. estimated tail probability")
abline(0, 1, lty = 2)
```

Summary-methods

Summarizing Gamma Shape Mixtures

Description

`summary-method` for class "gsm". This function allows to summarize the output of a Gamma Shape Mixture estimate procedure like `estim.gsm` or `estim.gsm_theta`.
Usage

S4 method for signature 'gsm'
summary(object, plot = FALSE, start = 1, ...)

Arguments

- **object**: object of class "gsm"; a list returned by the \texttt{estim.gsm} or \texttt{estim.gsm_theta} functions.
- **plot**: logical; if TRUE produces a bar plot of the mixture weights posterior means.
- **start**: MCMC run to start from.
- **...**: further arguments passed to or from other methods.

Value

The function \texttt{summary} computes and returns a list of summary statistics of the fitted gamma shape mixture given in \texttt{object}, in particular

- **theta**: summary index of the theta parameter posterior draws.
- **weight posterior means**: vector of the mixture weights posterior means.

Author(s)

Sergio Venturini <sergio.venturini@unibocconi.it>

References

See Also

\texttt{estim.gsm}, \texttt{estim.gsm_theta}, \texttt{plot-methods}, \texttt{predict-methods}.

Examples

```r
set.seed(2040)
y <- rgsm(500, c(.1, .3, .4, .2), 1)
burnin <- 5
mcmcsim <- 10
J <- 250
gsm.out <- estim.gsm(y, J, 300, burnin + mcmcsim, 6500, 340, 1/J)
summary(gsm.out, TRUE, start = (burnin + 1))
```
Index

*Topic class
 gsm-class, 6

*Topic distribution
 estim.gsm, 3
 estim.gsm_theta, 4
 GSM-package, 2
 GSMDist, 7

*Topic methods
 gsm-class, 6
 plot-methods, 8
 predict-methods, 9
 summary-methods, 10

*Topic mixture
 estim.gsm, 3
 estim.gsm_theta, 4
 GSM-package, 2

plot, gsm, missing-method (plot-methods), 8
plot-methods, 8
predict, ANY-method (predict-methods), 9
predict, gsm-method (predict-methods), 9
predict-methods, 9
qgsm, 7
qgsm(GSMDist), 7
rgamma, 8
rgsm, 7
rgsm(GSMDist), 7
summary, ANY-method (summary-methods), 10
summary, gsm-method (summary-methods), 10
summary-methods, 10
unroot, 8

allcurves.q, 2
class, 3, 5
dgamma, 8
dgsm, 7
dgsm(GSMDist), 7
estim.gsm, 2, 3, 5, 6, 8–11
estim.gsm_theta, 2, 4, 4, 6, 8–11
GammaDist, 7
gsm-class, 6
GSM-package, 2
GSMDist, 7
initialize, gsm-method (gsm-class), 6
pgamma, 8
pgsm, 7
pgsm(GSMDist), 7
plot, 2
plot, ANY, ANY-method (plot-methods), 8