Package ‘FactoClass’

October 1, 2018

Version 1.2.7

Date 2018-09-30

Title Combination of Factorial Methods and Cluster Analysis

Author Campo Elias Pardo <cepardot@unal.edu.co>, Pedro Cesar del Campo <pcdelcampon@unal.edu.co> and Camilo Jose Torres <cjtortresj@unal.edu.co>, with the contributions from Ivan Diaz <ildiazm@unal.edu.co>, Mauricio Sadinle <msadinleg@unal.edu.co>, Jhonathan Medina <jmedinau@unal.edu.co>.

Maintainer Campo Elias Pardo <cepardot@unal.edu.co>

Depends R (>= 2.10), ade4.ggplot2.ggrepel.xtable.scatterplot3d

Imports KernSmooth

Description Some functions of ‘ade4’ and ‘stats’ are combined in order to obtain a partition of the rows of a data table, with columns representing variables of scales: quantitative, qualitative or frequency. First, a principal axes method is performed and then, a combination of Ward agglomerative hierarchical classification and K-means is performed, using some of the first coordinates obtained from the previous principal axes method. See, for example: Lebart, L. and Piron, M. and Morineau, A. (2006). Statistique Exploratoire Multidimensionnelle, Dunod, Paris. In order to permit to have different weights of the elements to be clustered, the function 'kmeansW', programmed in C++, is included. It is a modification of 'kmeans'. Some graphical functions include the option: 'gg=FALSE'. When 'gg=TRUE', they use the 'ggplot2' and 'ggrepel' packages to avoid the super-position of the labels.

License GPL (>= 2)

Encoding latin1

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-10-01 04:50:02 UTC
R topics documented:

- addgrids3d
- adm1
- Bogota
- cafe
- centroids
- chisq.carac
- cluster.carac
- ColorAdjective
- DogBreeds
- dudi.tex
- Fac.Num
- FactoClass
- FactoClass.tex
- icfes08
- kmeansW
- list.to.data
- plot.dudi
- plotcc
- plotct
- plotFactoClass
- plotfp
- plotpairs
- stableclus
- supqual
- Vietnam
- ward.cluster
- Whisky

Index

addgrids3d

Add grids to a scatterplot3d

Description

The goal of this function is to add grids on an existing plot created using the package scatterplot3d.

Usage

```r
addgrids3d(x, y = NULL, z = NULL, grid = TRUE, col.grid = "grey", lty.grid = par("lty"), lab = par("lab"), lab.z = mean(lab[1:2]), scale.y = 1, angle = 40, xlim = NULL, ylim = NULL, zlim = NULL)
```
Arguments

- `x`, `y`, `z` numeric vectors specifying the x, y, z coordinates of points. `x` can be a matrix or a data frame containing 3 columns corresponding to the x, y and z coordinates. In this case the arguments `y` and `z` are optional.
- `grid` specifies the facet(s) of the plot on which grids should be drawn. Possible values are the combination of "xy", "xz" or "yz". Example: `grid = c("xy", "yz")`. The default value is TRUE to add grids only on xy facet.
- `col.grid, lty.grid` color and line type to be used for grids.
- `lab` a numerical vector of the form `c(x, y, len)`. The values of `x` and `y` give the (approximate) number of tickmarks on the x and y axes.
- `lab.z` the same as `lab`, but for z axis.
- `scale.y` of y axis related to x- and z axis.
- `angle` angle between x and y axis.
- `xlim, ylim, zlim` the x, y and z limits (min, max) of the plot.

Note

Users who want to extend an existing scatterplot3d graphic with the function `addgrids3d`, should consider to set the arguments `scale.y`, `angle`, ..., to the value used in `scatterplot3d`.

Author(s)

Alboukadel Kassambara <alboukadel.kassambara@gmail.com>

References

http://www.sthda.com

Examples

```r
library(FactoClass)
data(cafe)
Y <- cafe[1:10,1:3]
Y3D <- scatterplot3d(Y, main ="Y", type="h",color ="darkblue",box=FALSE)
Y3D$points3d(Y,pch=1)
addgrids3d(Y, grid = c("xy", "xz", "yz"))
cord2d <- Y3D$xyz.convert(Y)
text(cord2d,labels = rownames(Y),cex = 0.8,col = "blue",pos = 4)
```
admi

Admitted students to the seven careers of the Science Faculty

Description

Score obtained by each of the 445 students admitted to the seven careers of the Facultad de Ciencias of the Universidad Nacional de Colombia Bogota to the first semester of 2013, and some socio demographic information:

- **carr** a factor with the careers as its levels
- **mate,cien,soci,text,imag** score achieved in each of the areas of the admission exam
- **exam** total score of the admission exam
- **gene** gender of the admitted
- **estr** socioeconomic stratum in 3 categories
- **orig** geographic origin of the admitted
- **edad** age of the admitted in categories
- **niLE** if the admitted requires nivelation in language
- **niMa** if the admitted requires nivelation in mathematics
- **estr** socioeconomic stratum in 7 categories
- **age** age of the admitted in years

Usage

data(admi)

Format

Object of class `data.frame` with 445 rows and 15 columns.

Source

SIA: Academic Information System

References

Localities by Stratums in Bogota City

Description
Contingency Table that indicates the number of blocks of Bogota, in localities by stratum (DAPD 1997, p.77).

Usage
data(Bogota)

Format
Object whit class data.frame of 19 rows and 7 columns.

Source
DAPD (1997), Population, stratification and socioeconomic aspects of Bogota

References

Cofee cups

Description
Results of the mesure of some properties of twelve coffee cups

Usage
data(caffe)

Format
Object of class data.frame with 12 rows and 16 columns.

Source
References

centroids

Centroids of the Classes of a Partition

Description

It evaluates the centroids of a partition with the weights in \(rw \)

Usage

\[
\text{centroids}(\text{df}, c1, rw=\text{rep}(1/nrow(\text{df}), nrow(\text{df})))
\]

Arguments

- \(df \) object of class \text{data.frame}, with the data of variables or coordinates
- \(c1 \) vector indicating the cluster of each element
- \(rw \) weight of the rows of \(df \), by default the same

Value

Object of class \text{list} with the following:

- \(\text{centroids} \) class centroids
- \(\text{weights} \) class weights
- \(\text{cr} \) correlation ratios

Author(s)

Campo Elias Pardo <cepardot@unal.edu.co>

Examples

\[
\text{data(iris)}
\]
\[
\text{centroids(iris[, -5], iris[, 5])}
\]
Chisquare tests are performed for the contingency tables crossing a qualitative variable named cl and the qualitative variables present in columns from df.

Usage

```r
chisq.carac(df, cl, thr=2, decr=TRUE)
```

Arguments

df
data.frame, with factors contain the categories of the qualitative variables

cl
factor indicating the category of each subject

thr
threshold of test value, if decr=TRUE, only the rows where tval \(\geq \) thr are returned

decr
if decr=TRUE the rows are returned in decreasing order

Value

Matrix with the following columns:

- chi2: chisquare statistic
- dfr: degree of freedom of chi square density
- pval: \(p \) value
- tval: quantil \(\text{qnorm}(pval, \text{lower.tail}=\text{FALSE}) \)
- phi2: \(\phi_2 = \frac{\chi_2}{n} \)

Author(s)

Campo Elias Pardo <cepardot@unal.edu.co>

Examples

```r
data(DogBreeds)
round(chisq.carac(DogBreeds[,-7], DogBreeds[,7]),3)
round(chisq.carac(DogBreeds[,-7], DogBreeds[,7], decr=FALSE),3)
```
cluster.carac

Cluster Characterization by Variables

Description

It makes the characterization of the classes or cluster considering the variables in tabla. These variables can be quantitative, qualitative or frequencies.

Usage

`cluster.carac(tabla, class, tipo.v="d", v.lim= 2, dn=3, dm=3, neg=TRUE)`

Arguments

- `tabla`: object data.frame with variables of characterization, the variables must be of a single type (quantitative, qualitative or frequencies)
- `class`: vector that determines the partition of the table
- `tipo.v`: type of variables: quantitative("continuas"), qualitative ("nominales") or frequencies("frecuencia")
- `v.lim`: test value to show the variable or category like characteristic.
- `dn`: number of decimal digits for the p and test values.
- `dm`: number of decimal digits for the means.
- `neg`: if neg=TRUE, the variables or categories with negative test values are showed.

Details

For nominal or frequency variables it compares the percentage of the categories within each class with the global percentage. For continuous variables it compares the average within each class with the general average. Categories and variables are ordered within each class by the test values and it shows only those that pass the threshold v.lim.

Value

Object of class list. It has the characterization of each class or cluster.

Author(s)

Pedro Cesar del Campo <pcdelcampon@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co>, Mauricio Sadinle <msadinleg@unal.edu.co>

References

Examples

data(DogBreeds)
DB.act <- DogBreeds[-7] # active variables
DB.function <- subset(DogBreeds, select=7)
cluster.carac(DB.act, DB.function, "ca", 2.0) # nominal variables

data(iris)
iris.act <- Fac.Nu(iris)$numeric
class <- Fac.Nu(iris)$factor
cluster.carac(iris.act, class, "co", 2.0) # continuous variables

frequency variables
data(DogBreeds)
attach(DogBreeds)
weig<-table(FUNC, WEIG)
weig<-data.frame(weig[,1], weig[,2], weig[,3])
cluster.carac(weig, row.names(weig), "Fr", 2) # frequency variables
detach(DogBreeds)

Description

A group of students from Nanterre University (Paris X) were presented with a list of eleven colours: blue, yellow, red, white, pink, brown, purple, grey, black, green and orange. Each person in the group was asked to describe each color with one or more adjectives. A final list of 89 adjectives were associated with eleven colors.

Usage

data(ColorAdjective)

Format

Object of class data.frame with 89 rows and 11 columns.

Source

References

Fine, J. (1996), *Iniciacion a los analisis de datos multidimensionales a partir de ejemplos*, Notas de curso, Montevideo
Description

Table that describes 27 dog breeds considering their size, weight, speed, intelligence, affectivity, aggressiveness and function.

Usage

data(DogBreeds)

Format

Object of class data.frame with 27 rows and 7 columns with the following description:

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] Size(SIZE)</td>
<td>Small(sma) Medium(med) Large(lar)</td>
</tr>
<tr>
<td>[2] Weight(WEIG)</td>
<td>lightweight(lig) Medium(med) Heavy(hea)</td>
</tr>
<tr>
<td>[3] Speed(SPEE)</td>
<td>Low(low) Medium(med) High(hig)</td>
</tr>
<tr>
<td>[4] Intelligence(INTE)</td>
<td>Low(low) Medium(med) High(hig)</td>
</tr>
<tr>
<td>[5] Affectivity(AFFE)</td>
<td>Low(low) High(hig)</td>
</tr>
<tr>
<td>[6] aggressiveness(AGGR)</td>
<td>Low(low) High(hig)</td>
</tr>
</tbody>
</table>

Source

Fine, J. (1996), 'Iniciacion a los analisis de datos multidimensionales a partir de ejemplos', Notas de clase, Montevideo.

References

Brefort, A.(1982), 'Letude des races canines a partir de leurs caracteristiques qualitatives', HEC - Jouy en Josas

Description

Coordinates and aids of interpretation are wrote in tabular environment of LaTeX inside a Table
Usage

dudi.tex(dudi, job="", aidsC=TRUE, aidsR=TRUE, append=TRUE)
latex(obj, job="latex", tit="", lab="", append=TRUE, dec=1)

Arguments

dudi an object of class dudi
job a name to identify files and outputs
aidsC if it is TRUE the coordinates and aids of interpretation of the columns are printed
aidsR if it is TRUE the coordinates and aids of interpretation of the rows are printed
append if it is TRUE LaTeX outputs are appended on the file
obj object to export to LaTeX
tit title of the table
lab label for crossed references of LaTeX table
dec number of decimal digits

Details

latex function is used to build up a table. The aids of interpretation are obtained with inertia.dudi of ade4. A file is wrote in the work directory (job.txt) with the following tables:

tvalp eigenvalues
c1 eigenvectors
c0 column coordinates
col.abs column contributions in percentage
col.rel quality of the representation of columns in percentage
col.cum accumulated quality of the representation of columns in percentage/100
li row coordinates
row.abs row contributions in percent
row.rel quality of the representation of rows in percentage
row.cum accumulated quality of the representation of rows in percentage/100

Author(s)

Campo Elias PARDO <cepardot@unal.edu.co>

Examples

data(Bogota)
ca1 <- dudi.coa(Bogota[,2:7], scannf = FALSE)
dudi.tex(ca1, job="Bogota")
FactoClass

Division of qualitative and quantitative variables

Description

An object of class data.frame is divided into a list with two tables, one with quantitative variables and the other with qualitative variables.

Usage

Fac.Num(tabla)

Arguments

- **tabla**: object of class 'data.frame'

Value

It returns one list with one or two objects of class data.frame with the following characteristics:

- **factor**: table with the qualitative variables
- **numeric**: table with the quantitative variables

Author(s)

Pedro Cesar Del Campo <pcdelcampon@unal.edu.co>

Examples

```r
data(DogBreeds)
Fac.Num(DogBreeds)

data(iris)
Fac.Num(iris)
```

FactoClass

Combination of Factorial Methods and Cluster Analysis

Description

Performs the factorial analysis of the data and a cluster analysis using the nfc1 first factorial coordinates
Usage

FactoClass(dfact, metodo, dfilu = NULL , nf = 2, nfcl = 10, k.clust = 3,
scanFC = TRUE , n.max = 5000 , n.clus = 1000 ,sign = 2.0,
conso=TRUE , n.indi = 25,row.w = rep(1, nrow(dfact)))
S3 method for class 'FactoClass'
print(x, ...)
analisis.clus(X,W)

Arguments

dfact object of class data.frame, with the data of active variables.
metodo function of ade4 for ade4 factorial analysis, dudi.pca,Principal Component Analysis; dudi.coa, Correspondence Analysis; witwit.coa, Internal Correspondence Analysis; dudi.acm, Multiple Correspondence Analysis ...
dfilu ilustrative variables (default NULL)
nf number of axes to use into the factorial analysis (default 2)
 nfcl number of axes to use in the classification (default 10)
k.clust number of classes to work (default 3)
scanFC if is TRUE, it asks in the console the values nf, nfcl y k.clust
n.max when rowname(dfact)>=n.max, k-means is performed previous to hierarchical clustering (default 5000)
n.clus when rowname(fact)>=n.max, the previous k-means is performed with n.clus groups (default 1000)
sign threshold test value to show the characteristic variables and modalities
conso when conso is TRUE, the process of consolidating the classification is performed (default TRUE)
n.indi number of indices to draw in the histogram (default 25)
row.w vector containing the row weights if metodo<>dudi.coa
x object of class FactoClass
... further arguments passed to or from other methods
X coordinates of the elements of a class
W weights of the elements of a class

Details

Lebart et al. (1995) present a strategy to analyze a data table using multivariate methods, consisting of an intial factorial analysis according to the nature of the compiled data, followed by the performance of mixed clustering. The mixed clustering combines hierarchic clustering using the Ward’s method with K-means clustering. Finally a partition of the data set and the characterization of each one of the classes is obtained, according to the active and illustrative variables, being quantitative, qualitative or frequency.

FactoClass is a function that connects procedures of the package ade4 to perform the analysis factorial of the data and from stats for the cluster analysis.
The function `analisis.clus` calculates the geometric characteristics of each class: size, inertia, weight and square distance to the origin.

For impression in LaTeX format see `FactoClass.tex`

To draw factorial planes with cluster see `plotFactoClass`

Value

object of class `FactoClass` with the following:

- `dudi`: object of class `dudi` from `ade4` with the specifications of the factorial analysis
- `nfcl`: number of axes selected for the classification
- `k`: number of classes
- `indices`: table of indices obtained through WARD method
- `cor.clus`: coordinates of the clusters
- `clussumm`: summary of the clusters
- `cluster`: vector indicating the cluster of each element
- `carac.cate`: cluster characterization by qualitative variables
- `carac.cont`: cluster characterization by quantitative variables
- `carac.frec`: cluster characterization by frequency active variables

Author(s)

Pedro Cesar del Campo <pcdelcampon@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co> http://www.docentes.unal.edu.co/cepardot, Ivan Diaz <ildiazm@unal.edu.co>, Mauricio Sadinle <msadinleg@unal.edu.co>

References

Examples

```r
# Cluster analysis with Correspondence Analysis
data(ColorAdjective)
FC.col <- FactoClass(ColorAdjective, dudi.coa)
6
10
5

FC.col

FC.col$dudi

# Cluster analysis with Multiple Correspondence Analysis
```
data(DogBreeds)

DB.act <- DogBreeds[-7] # active variables
DB.ilu <- DogBreeds[7] # ilustrative variables

FC.db <- FactoClass(DB.act, dudi.acm, k.clust = 4,
 scanFC = FALSE, dfilu = DB.ilu, nfcl = 10)

FC.db

FC.db$clus.summ
FC.db$indices

FactoClass.tex

Table of Coordinates, Aids of Interpretation of the Principal Axes and Cluster Analysis in LaTeX format.

Description

The coordinates, aids of interpretation and results of cluster analysis of an object of class `FactoClass` are written in tables for edition in LaTeX format and written in a file.

Usage

```R
FactoClass.tex(FC, job="", append=TRUE, dir = getwd(), p.clust = FALSE )
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| FC | object of class `FactoClass`.
| job | A name to identify the exit. |
| append | if is 'TRUE' the exit in LaTeX format is added to the file. |
| dir | name of the directory in which the file is kept. |
| p.clust | the value of this parameter is 'TRUE' or 'FALSE' to print or not the cluster of each element. |
| tabla | object of class 'data frame'. |
| dec | number of decimal. |
x object of class FactoClass.tex

... further arguments passed to or from other methods

obj object of class data.frame.

tit title of the table in LaTeX format.

lab label of the table in LaTeX format.

to.print if it is ‘TRUE’ the table is also printed in the console.

Details

This function helps with the construction of tables in LaTeX format. Besides, it allows an easy reading of the generated results by FactoClass. The function latexDF is an entrance to xtable and turns an object of class data.frame a table in LaTeX format.

Value

object of class FactoClass.tex with the following characteristics:

tvalp eigenvalues * 1000.

c1 eigenvectors.

c0 coordinates of the columns.

col.abs contribution of each column to the inertia of the axis (percentage).

col.rel quality of representation of each column (percentage).

col.cum quality of representation of each column accumulated in the subspace (percentage).

li coordinates of the rows.

row.abs contribution of each rows to the inertia of the axis (percentage).

row.rel quality of representation of each rows (percentage).

row.cum quality of representation of each rows accumulated in the subspace (percentage).

indices table of indices of level generated by the Ward cluster analysis.

cor.clus coordinates of the center of gravity of each cluster.

clus.summ summary of the cluster.

carac.cate cluster characterization by qualititative variables.

carac.cont cluster characterization by quantitative variables.

cluster vector indicating the cluster of each element.

Author(s)

Pedro Cesar del Campo <pcdelcampon@unal.edu.co>, Campo Elias Pardo <cepar dot@unal.edu.co>
Examples

```r
data(DogBreeds)
DB.act <- DogBreeds[-7]  # active variables
DB.ilu <- DogBreeds[7]   # illustrative variables
# MCA
FaCl <- FactoClass( DB.act, dudi.acm,
                   scanFC = FALSE, dfilu = DB.ilu, nfcl = 10, k.clust = 4 )
FactoClass.tex(FaCl, job="DogBreeds1", append=TRUE)
# FactoClass.tex(FaCl, job="DogBreeds", append=TRUE , p.clust = TRUE)
```

icfes08

Department by Levels of Schools in Colombia

Description

Contingency Table that classifies the schools of Colombia by departments and level of the schools agree with the performance of its students.

Usage

```r
data(icfes08)
```

Format

Object with class `data.frame` of 29 rows and 12 columns.

Source

ICFES Colombia

References

kmeansw

K-means with Weights of the Elements

Description

It is a modification of kmeans Hartigan-Wong algorithm to consider the weight of the elements to classify.

Usage

```r
kmeansw(x, centers, weight = rep(1,nrow(x)),
        iter.max = 10, nstart = 1)
```
Arguments

- **x**: A numeric vector, matrix or data frame.
- **centers**: Either the number of clusters or a set of initial (distinct) cluster centres. If a number, a random set of (distinct) rows in x is chosen as the initial centres.
- **weight**: weight of the elements of x. by default the same.
- **iter.max**: The maximum number of iterations allowed.
- **nstart**: If centers is a number, how many random sets should be chosen?

Details

With the 'Hartigan-Wong’ algorithm, this function performs the K-means clustering diminishing inertia intra classes. In this version the Fortran code kmnsW.f was changed by C++ code kmeanw.cc programed by Camilo Jose Torres, modifying C code programed by Burkardt.

Value

object of class FactoClassNtex with the following characteristics:

- **cluster**: vector indicating the cluster of each element.
- ...

Author(s)

Camilo Jose Torres <cjtorresj@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co>

References

Examples

```r
data(Bogota)
ac.bog <- Bogota[-1]
il.bog <- Bogota[1]

acs <- dudi.coa(ac.bog, nf=6, scannf = FALSE)
kmeansW(acs$li, 7, acs$lw)
```
list.to.data

Description

Modification of an object of class `list` into an object of class `data.frame`.

Usage

```r
list.to.data(lista, nvar="clasif")
```

Arguments

- `lista`: list that contains several `data.frame` of the same structure.
- `nvar`: (Optional) Name of the new variable that considers the partition given by the elements of the list.

Details

This function turns an object of class `list` into an object of class `data.frame`, this function is used internally to create objects of class `data.frame` to make tables in *LaTeX* format.

Value

Object of class `data.frame`.

Author(s)

Pedro Cesar Del Campo <pcdelcampon@unal.edu.co>

Examples

```r
A <- data.frame(r1=rnorm(5), r2=rnorm(5))
B <- data.frame(r1=rnorm(15), r2=rnorm(15))

LL <- list(A=A, B=B)
LL
list.to.data(LL)
```
plot.dudi

Factorial Planes from Objects of Class dudi

Description

It plots factorial planes from objects of class dudi.

Usage

```r
## S3 method for class 'dudi'
plot(x, ex=1, ey=2, xlim=NULL, ylim=NULL, main=NULL, rotx=FALSE,
     roty=FALSE, roweti=row.names(dudi$li),
     coleti=row.names(dudi$co), axislabel=TRUE, font.row="plain",
     font.col="blue", alpha.col=1, alpha.row=1, cex=0.8, cex.row=0.8,
     all.point=TRUE, Trow=TRUE, Tcol=TRUE, cframe=1.2, ucal=0,
     cex.global=1, infaxes="out", gg=FALSE, ...)
sutil.grid(grid, scale=TRUE)
```

Arguments

- `x`: object of type dudi
- `ex`: number indentifying the factor to be used as horizontal axis. Default 1
- `ey`: number indentifying the factor to be used as vertical axis. Default 2
- `xlim`: the x limits (x1, x2) of the plot
- `ylim`: the y limits of the plot
- `main`: graphic title
- `rotx`: TRUE if you want change the sign of the horizontal coordinates. Default FALSE
- `roty`: TRUE if you want change the sign of the vertical coordinates. Default FALSE
- `roweti`: selected row points for the graphic. Default all points
- `coleti`: selected column points for the graphic. Default all points
- `font.row`: type of font for row labels. Default "plain"
- `font.col`: type of font for column labels. Default "plain"
- `axislabel`: if it is TRUE the axis information is written
- `col.row`: color for row points and row labels. Default "black"
- `col.col`: color for column points and column labels. Default "blue"
- `alpha.row`: transparency for row points and row labels. Default cex.row=1
- `alpha.col`: transparency for column points and column labels. Default cex.col=1
- `cex`: global scale for the labels. Default cex=0.8
- `cex.row`: scale for row points and row labels. Default cex.row=0.8
- `cex.col`: scale for column points and column labels. Default cex.col=0.8
plot.dudi

all.point If if is TRUE, all points are outlined. Default all.point=TRUE
Trow if it is TRUE the row points are outlined. Default TRUE
Tcol if it is TRUE the column points are outlined. Default TRUE
cframe scale for graphic limits
ucal quality representation threshold (percentage) in the plane. Default ucal=0
cex.global scale for the label sizes
infaxes place to put the axes information: "out","in","no". Default infaxes="out". If infaxes="out" the graphic is similar to FactoMineR graphics, otherwise the style is similar to the one in ade4, without axes information when infaxes="no"
gg If TRUE the version ggplot ggrepel is performance. Default FALSE
... further arguments passed to or from other methods
cgrid internal parameter
scale internal

Details

Plot the selected factorial plane. sutil.grid is used by plot.dudi

Value

It graphs the factorial plane x,y using $co, $li of a "dudi" object. If ucal > 0, the function inertia.dudi is used to calculate the quality of representation on the plane

Author(s)

Campo Elias Pardo <cepardot@unal.edu.co> and Jhonathan Medina <jmedinau@unal.edu.co>

Examples

data(Bogota)
ca <- dudi.coa(Bogota[,2:7],scannf=FALSE,nf=4)
with ggplot2 and ggrepel
plot(ca,gg=TRUE)
dev.new()
ade4 style
plot.dudi(ca,ex=3,ey=4,ucal=0.2,all.point=FALSE,infaxes="in")
plotcc

Correlation circle from coordinates

Description

It plots Correlation circle from a coordinate table

Usage

plotcc(x, ex=1, ey=2, cex.label=4.5, col.label="black", font.label="bold", col.arrow="black", fullcircle=TRUE, y=NULL)

Arguments

x matrix or data.frame with coordinates
ex the component like horizontal axis
ey the component like vertical axis
cex.label size of the variable labels. Default 4.5
col.label color of the variable labels. Default black
font.label font of the variable labels from fontface of ggplot2. Default bold
col.arrow color of the arrows. Default black
fullcircle if it is TRUE (default), the circle is complete
y internal

Details

Plot the selected factorial plane as a correlation circle for the variables from a normed PCA.

Value

It graphs the factorial plane ex,ey using a data.frame or matrix x with axis coordinates.

Author(s)

Jhonathan Medina <jmedinau@unal.edu.co> and Campo Elias Pardo <cepardot@unal.edu.co>

Examples

data(admi)
pca <- dudi.pca(admi[,2:6], scannf=FALSE, nf=2)
fullcircle
plotcc(pca$co)
no fullcircle
plotcc(pca$co, fullcircle=FALSE)
Description

It plots barplot profiles of rows or columns from a contingency table including marginal profiles.

Usage

```r
plotct(x, profiles="both", legend.text=TRUE, tables=FALSE, nd=1,...)
```

Arguments

- `x`: contingency table
- `profiles`: select profiles: "both" file and column profiles in two graph devices, "row" only row profiles, "col" only column profiles
- `legend.text`: if it is TRUE a box with legends is included at the right
- `tables`: logical, if TRUE tables with marginals are returned
- `nd`: number of decimals to profiles as percentages
- `...`: further arguments passed to or from other methods

Details

Plot row profiles in horizontal form and columns profiles in vertical form

Value

If `tables=TRUE`, object of class `list` with the following:

- `ct`: contingency table with row and column marginals
- `perR`: row profile with marginal, in percent
- `perC`: column profile with marginal, in percent

Author(s)

Camilo Jose Torres <cjtorresj@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co>
http://www.docentes.unal.edu.co/cepardot

Examples

```r
mycolors<-colors()[c(1,26,32,37,52,57,68,73,74,81,82,84,88,100)]
data(Bogota)
plotct(Bogota[,2:7],col=mycolors)
# return tables with marginals
tabs <- plotct(Bogota[,2:7],col=mycolors,tables=TRUE,nd=0)
```
plotFactoClass

Factorial Planes Showing the Classes

Description

For objects of class FactoClass it graphs a factorial plane showing the center of gravity of the cluster, and identifying with colors the cluster to which each element belongs.

Usage

plotFactoClass(FC, x=1, y=2, xlim=NULL, ylim=NULL, rotx=FALSE, roty=FALSE, roweti=row.names(dudi$li), coleti=row.names(dudi$co), titre=NULL, axislabel=TRUE, col.row=1:FC$k, col.col="blue", cex=0.8, cex.row=0.8, cex.col=0.8, all.point=TRUE, Trow=TRUE, Tcol=TRUE, cframe=1.2, ucal=0, cex.global=1, infaxes="out", nclus=paste("cl", 1:FC$k, sep=""), cex.clu=cex.row, cstar=1, gg=FALSE)

Arguments

FC
object of class FactoClass.

x
umber indentifying the factor to be used as horizontal axis. Default x=1

y
number indentifying the factor to be used as vertical axis. Default y=2

xlim
the x limits (x1, x2) of the plot

ylim
the y limits of the plot

rotx
TRUE if you want change the sign of the horizontal coordinates (default FALSE).

roty
TRUE if you want change the sign of the vertical coordinates (default FALSE).

roweti
selected row points for the graphic. Default all points.

col.col
selected column points for the graphic. Default all points.

titre
graphics title.

axislabel
if it is TRUE the axis information is written.

col.row
color for row points and row labels. Default 1:FC$k.

col.col
color for column points and column labels. Default "grey55".

cex
global scale for the labels. Default cex=0.8.

cex.row
scale for row points and row labels. Default cex.row=0.8.

cex.col
scale for column points and column labels. Default cex.col=0.8.

cex.clu
scale for cluster points and cluster labels. (default cex.row).

all.point
if if is TRUE, all points are outlined. Default all.point=TRUE.

Trow
if it is TRUE the row points are outlined. Default TRUE.
plotfp

Tcol if it is TRUE the column points are outlined. Default TRUE.
ncus labels for the clusters (default cl1, cl2, ...
cframe scale for graphics limits
cal quality Representation Threshold in the plane. Default ucal=0

cex.global scale for the label sizes
infaxes place to put the axes information: "out"", "in", "no". Default infaxes="out". If infaxes="out" the graphic is similar to FactoMiner graphics, otherwise the style is similar to the one in ade4, without axes information when infaxes="no"
cstar length of the rays between the centroids of the classes and their points

gg If TRUE the version ggplot ggrepel is performation. Default FALSE

Details
It draws the factorial plane with the clusters. Only for objects FactoClass see FactoClass. The factorial plane is drawn with planfac and the classes are projected with s.class of ade4

Value
It draws the factorial plane x, y using $co, $li of the object of class FactoClass. If ucal > 0, the function inertia.dudi is used to calculate the quality of representation in the plane.

Author(s)
Campo Elias Pardo <cepardot@unal.edu.co> Pedro Cesar del Campo <pcdelcampon@unal.edu.co>.

Examples

data(Bogota)
Bog.act <- Bogota[-1]
Bog.ilu <- Bogota[1]

FC.Bogota<-FactoClass(Bog.act, dudi.coa,Bog.ilu,nf=2,nfcl=5,k.clust=5,scanFC=FALSE)

plotFactoClass(FC.Bogota,titre="First Factorial Plane from the SCA of Bogota's Blocks", col.row=c("maroon2","orchid4","darkgoldenrod2","dark red","aquamarine4"))

plotfp

Factorial Planes from Coordinates

Description
It plots factorial planes from a coordinate table
Usage

plotfp(co,x=1,y=2,eig=NULL,cal=NULL, ucal=0,xlim=NULL,ylim=NULL,main=NULL, rotx=FALSE, roty=FALSE, eti=names(co),axislabel=TRUE,col.row="black", cex=0.8,cex.row=0.8, all.point=TRUE,cframe=1.2,cex.global=1,infaxes="out",asp=1,gg=FALSE)

Arguments

co matrix or data.frame with coordinates
x the component like horizontal axis
y the component like vertical axis
eig numeric with the eigenvalues
cal matrix or data.frame with the square cosinus
ucal quality representation threshold (percentage) in the plane. Default ucal=0
xlim the x limits (x1, x2) of the plot
ylim the y limits of the plot
main graphic title
rotx TRUE if you want change the sign of the horizontal coordinates. Default FALSE
roty TRUE if you want change the sign of the vertical coordinates. Default FALSE
eti selected row points for the graphic. Default all points
axislabel if it is TRUE the axis information is written
col.row color for row points and row labels. Default "black"
cex global scale for the labels. Default cex=0.8
cex.row scale for row points and row labels. Default cex.row=0.8
all.point If if is TRUE, all points are outlined. Default all.point=TRUE
cframe scale for graphic limits
cex.global scale for the label sizes
infaxes place to put the axes information: "out","in","no". Default infaxes="out". If infaxes="out" the graphic is similar to FactoMineR graphics, otherwise the style is similar to the one in ade4, without axes information when infaxes="no"
asp the y/x aspect ratio
gg If TRUE the version ggplot ggrepel is performance. Default FALSE

Details

Plot the selected factorial plane.

Value

It graphs the factorial plane x,y using co and optional information of eigenvalues and representation quality of the points. If ucal > 0, only the points with the quality of representation on the plane bigger than ucal are pointed
Author(s)
Campo Elias Pardo <cepardot@unal.edu.co> and Jhonathan Medina <jmedinav@unal.edu.co>

Examples

data(Bogota)
c <- dudi.coa(Bogota[,2:7], scannf=FALSE, nf=2)
 # ade4 style
plotfp(c$li,eig=c$eig,main="First Factorial Plane", infaxes="in")
 # with ggplot2 and ggrepel
plotfp(c$li,eig=c$eig,main="First Factorial Plane", gg=TRUE)

plotpairs

Description
Modified pairs plot: marginal kernel densities in diagonal, bivariated kernel densities in triangular superior; and scatter bivariate plots in triangular inferior

Usage
plotpairs(x, maxg=5, cex=1)

Arguments
x
matrix or data.frame of numeric columns
maxg
maximum number of variables to plot
cex
size of the points in dispersion diagrams

Details
Plot row profiles in horizontal form and columns profiles in vertical form

Value
The function does not return values

Author(s)
Campo Elias Pardo <cepardot@unal.edu.co>

Examples

data(iris)
plotpairs(iris[,4])
stableclus

Stable clusters for cluster analysis

Description

Performs Stable Cluster Algorithm for cluster analysis, using factorial coordinates from a dudi object

Usage

stableclus(dudi, part, k.clust, ff.clus=NULL, bplot=TRUE, kmns=FALSE)

Arguments

dudi
A dudi object, result of a previous factorial analysis using ade4 or FactoClass

part
Number of partitions

k.clust
Number of clusters in each partition

ff.clus
Number of clusters for the final output, if NULL it asks in the console (Default NULL)

bplot
if TRUE, prints frequencies barplot of each cluster in the product partition (Default TRUE)

kmns
if TRUE, the process of consolidating the classification is performed (Default FALSE)

Details

Diday (1972) (cited by Lebart et al. (2006)) presented a method for cluster analysis in an attempt to solve one of the inconvenients with the kmeans algorithm, which is convergence to local optims. Stable clusters are built by performing different partitions (using kmeans algorithm), each one with different initial points. The groups are then formed by selecting the individuals belonging to the same cluster in every partition.

Value

object of class stableclus with the following characteristics:

cluster
vector indicating the cluster of each element.

...

Author(s)

Carlos Andres Arias <caariasr@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co>
supqual

References

Examples

data(ColorAdjective)
FCCol <- FactoClass(ColorAdjective, dudi.coa,nf=6,nfcl=10,k.clust=7,scanFC = FALSE)
acs <- FCCol@dudi
stableclus(acs,3,3,TRUE,TRUE)

supqual Projection of Qualitative Variables in PCA and MCA

Description

It returns the coordinates and aids to the interpretation when one or more qualitative variables are projected as illustrative in PCA or MCA

Usage

supqual(du,qual)

Arguments

du a object of class “pca” or “acm” (“dudi”) obtained with dudi.pca or dudi.acm of package ade4
qual a data.frame of qualitative variables as factors

Value

object of class list with the following:

wcat weight of the categories in PCA case
ncat frequency of the categories in MCA case
dis2 square distance to the origin from the complete space
coor factorial coordinates
tv test values
cos2 square cosinus
scr relation of correlation

Author(s)
Campo Elias Pardo <cepardot@unal.edu.co>

Examples

in PCA
data(admi)
Y<-admi[,2:6]
pcaY<-dudi.pca(Y,scannf=FALSE)
Yqual<-admi[,c(1,8)]
supqual(pcaY,Yqual)

in MCA
Y<-admi[,c(8,11,9,10)]
mcaY<-dudi.acm(Y,scannf=FALSE)
supqual(mcaY,admi[,c(1,13)])

<table>
<thead>
<tr>
<th>Vietnam</th>
<th>Student opinions about the Vietnam War</th>
</tr>
</thead>
</table>

Description

The newspaper of the students of the University of Chapel Hill (North Carolina) conducted a survey of student opinions about the Vietnam War in May 1967. Responses were classified by sex, year in the program and one of four opinions:

A defeat power of North Vietnam by widespread bombing and land invasion
B follow the present policy
C withdraw troops to strong points and open negotiations on elections involving the Viet Cong
D immediate withdrawal of all U.S. troops

Usage

data(Vietnam)

Format

The 3147 consulted students were classified considering the sex, year of study and chosen strategy, originating a contingency table of 10 rows: M1 to M5 and F1 to F5 (the years of education are from 1 to 5 and sexes are male (M) and female (F)) and 4 columns A, B, C and D.
Description

Performs the classification by Ward’s method from the matrix of Euclidean distances.

Usage

```r
ward.cluster(dista, peso = NULL, plots = TRUE, h.clust = 2, n.indi = 25)
```

Arguments

- `dista`: matrix of Euclidean distances (class(dista)="dist").
- `peso`: (Optional) weight of the individuals, by default equal weights
- `plots`: it makes dendrogram and histogram of the Ward’s method
- `h.clust`: if it is ‘0’ returns a object of class `hclust` and a table of level indices, if it is ’1’ returns a object of class `hclust`, if it is ’2’ returns a table of level indices.
- `n.indi`: number of indices to draw in the histogram (default 25).

Details

It is an entrance to the function `h.clus` to obtain the results of the procedure presented in Lebart et al. (1995). Initially the matrix of distances of Ward of the elements to classify is calculated:

The Ward’s distance between two elements to classify i and l is given by:

$$W(i,l) = \frac{(m_i \ast m_l)}{(m_i + m_l) \ast \text{dist}(i,l)^2}$$

where m_i and m_l are the weights and $\text{dist}(i,l)$ is the Euclidean distance between them.

Value

It returns an object of class `hclust` and a table of level indices (depending of h.clust). If plots = TRUE it draws the indices of level and the dendrogram.
Author(s)

Pedro Cesar del Campo <pcdelcampon@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co>
http://www.docentes.unal.edu.co/cepardot

References

Examples

```r
data(ardeche)
c <- dudi.coa(ardeche$tab, scannf=FALSE, nf=4)

ward.cluster( dista = dist(c$li), peso=c$lw )

dev.new()
HW <- ward.cluster( dista = dist(c$li), peso=c$lw ,h.clust = 1)
plot(HW)
rect.hclust(HW, k=4, border="red")
```

Whisky

Whisky example

Description

Data frame with five features of 35 whisky brands:

- **price** in Frace Francs
- **malt** proportion in percentage
- **type** by malt proportion: low, medium, pure
- **aging** in years
- **taste** mean score of a taste panel

Usage

```r
data(Whisky)
```

Source

Fine, J. (1996), 'Iniciacion a los analisis de datos multidimensionales a partir de ejemplos', Notes of course, Montevideo
Index

*Topic **cluster**
- FactoClass, 12
- kmeansW, 17
- plotFactoClass, 24
- stableclus, 28

*Topic **datasets**
- adm, 4
- Bogota, 5
- cafe, 5
- ColorAdjective, 9
- DogBreeds, 10
- icfes08, 17
- Vietnam, 30
- Whisky, 32

*Topic **hplot**
- cluster.carac, 8
- plot.dudi, 20
- plotcc, 22
- plotct, 23
- plotFactoClass, 24
- plotfp, 25
- plotpairs, 27
- supqual, 29
- ward.cluster, 31

*Topic **multivariate**
- centroids, 6
- chisq.carac, 7
- cluster.carac, 8
- dudi.tex, 10
- Fac.Num, 12
- FactoClass, 12
- FactoClass.tex, 15
- kmeansW, 17
- list.to.data, 19
- plot.dudi, 20
- plotcc, 22
- plotct, 23
- plotFactoClass, 14, 24
- plotfp, 25
- plotpairs, 27
- print.FactoClass (FactoClass), 12
- print.FactoClass.tex (FactoClass.tex), 15
- roundDF (FactoClass.tex), 15

ward.cluster, 31
addgrids3d, 2
admi, 4
analisis.clus (FactoClass), 12
Bogota, 5
cafe, 5
centroids, 6
chisq.carac, 7
cluster.carac, 8
ColorAdjective, 9
DogBreeds, 10
dudi.tex, 10
Fac.Num, 12
FactoClass, 12, 15, 16, 24, 25
FactoClass.tex, 14, 15
icfes08, 17
kmeansW, 17
kmnsw (kmeansW), 17
latex (dudi.tex), 10
latexDF (FactoClass.tex), 15
list.to.data, 19
plot.dudi, 20
plotcc, 22
plotct, 23
plotFactoClass, 14, 24
plotfp, 25
plotpairs, 27
print.FactoClass (FactoClass), 12
print.FactoClass.tex (FactoClass.tex), 15
roundDF (FactoClass.tex), 15
stableclus, 28
supqual, 29
sutil.grid (plot.dudi), 20

Vietnam, 30

ward.cluster, 31
Whisky, 32