Package ‘FactoClass’

September 1, 2017

Version 1.1.6
Date 2017-09-01
Title Combination of Factorial Methods and Cluster Analysis
Author Campo Elias Pardo <cepardot@unal.edu.co>,
 Pedro Cesar del Campo <pcedelcampon@unal.edu.co> and
 Camilo Jose Torres <cjtorresj@unal.edu.co>,
 with the contributions from.
 Ivan Diaz <ildiazm@unal.edu.co>,
 Mauricio Sadinle <msadinleg@unal.edu.co>.
Maintainer Campo Elias Pardo <cepardot@unal.edu.co>
Depends R (>= 2.7.0), ade4, xtable, scatterplot3d,KernSmooth
Description Some functions of 'ade4' and 'stats' are combined in order to obtain a parti-
tion of the rows of a data table, with columns representing variables of scales: quantitative, quali-
tative or frequency.
First, a principal axes method is performed and then, a combination of Ward agglomerative hier-
archical classification and K-means is performed, using some of the first coordinates ob-
tained from the previous principal axes method.
The function 'kmeansW', a modification of 'kmeans', programmed in C++, is included, in or-
der to permit to have different weights of the elements to be clustered. Some complemen-
tary functions and datasets are included.
See, for example:
Statistique exploratoire multidimensionnelle, Dunod, Paris.
License GPL (>= 2)
Encoding latin1
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-09-01 15:27:11 UTC

R topics documented:

 addgrids3d .. 2

1
addgrids3d

Add grids to a scatterplot3d

Description

The goal of this function is to add grids on an existing plot created using the package scatterplot3d

Usage

addgrids3d(x, y = NULL, z = NULL, grid = TRUE, col.grid = "grey",
lty.grid = par("lty"), lab = par("lab"), lab.z = mean(lab[1:2]),
scale.y = 1, angle = 40, xlim = NULL, ylim = NULL, zlim = NULL)

Arguments

x, y, z numeric vectors specifying the x, y, z coordinates of points. x can be a matrix or a data frame containing 3 columns corresponding to the x, y and z coordinates. In this case the arguments y and z are optional
grid specifies the facet(s) of the plot on which grids should be drawn. Possible values are the combination of "xy", "xz" or "yz". Example: grid = c("xy", "yz"). The default value is TRUE to add grids only on xy facet.

col.grid, lty.grid
color and line type to be used for grids

lab a numerical vector of the form c(x, y, len). The values of x and y give the (approximate) number of tickmarks on the x and y axes.

lab.z the same as lab, but for z axis

scale.y of y axis related to x- and z axis

angle angle between x and y axis

xlim, ylim, zlim the x, y and z limits (min, max) of the plot.

Note
Users who want to extend an existing scatterplot3d graphic with the function addgrids3d, should consider to set the arguments scale.y, angle, ..., to the value used in scatterplot3d.

Author(s)
Alboukadel Kassambara <alboukadel.kassambara@gmail.com>

References
http://www.sthda.com

Examples
library(FactoClass)
data(cafe)
Y <- cafe[1:10,1:3]
Y3D <- scatterplot3d(Y, main ="Y", type="h", color ="darkblue", box=FALSE)
Y3D$points3d(Y,pch=1)
addgrids3d(Y, grid = c("xy", "xz", "yz"))
cord2d <-Y3D$xyz.convert(Y)
text(cord2d,labels = rownames(Y),cex = 0.8,col = "blue",pos = 4)

admi

Admitted students to the seven careers of the Science Faculty

Description
Score obtained by each of the 445 students admitted to the seven careers of the Facultad de Ciencias of the Universidad Nacional de Colombia Bogota to the first semester of 2013, and some socio demographic information:

carr a factor with the careers as its levels

mate,cien,soci,text,imag score achieved in each of the areas of the admission exam
exam total score of the admission exam
gene gender of the admitted
estr socioeconomic stratum in 3 categories
orig geographic origin of the admitted
edad age of the admitted in categories
niLE if the admitted requires nivelation in language
niMa if the admitted requires nivelation in mathematics
estr socioeconomic stratum in 7 categories
age age of the admitted in years

Usage

data(admi)

Format

Object of class `data.frame` with 445 rows and 15 columns.

Source

SIA: Academic Information System

References

Bogota

Localities by Stratums in Bogota City

Description

Contingency Table that indicates the number of blocks of Bogota, in localities by strataums (DAPD 1997, p.77).

Usage

data(Bogota)

Format

Object whit class `data.frame` of 19 rows and 7 columns.

Source

DAPD (1997), Population, stratification and socioeconomic aspects of Bogota
References

Description

Table that describes 27 breeds of dog considering their size, weight, speed, intelligence, affectivity, aggressiveness and function.

Usage

```r
data(BreedsDogs)
```

Format

Object of class data.frame with 27 rows and 7 columns with the following description:

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] Size</td>
<td>Small(sma) Medium(med) Large(lar)</td>
</tr>
<tr>
<td>[3] Speed</td>
<td>Low(low) Medium(med) High(hig)</td>
</tr>
<tr>
<td>[4] Intelligence</td>
<td>Low(low) Medium(med) High(hig)</td>
</tr>
<tr>
<td>[5] Affectivity</td>
<td>Low(low) High(hig)</td>
</tr>
<tr>
<td>[6] aggressiveness</td>
<td>Low(low) High(hig)</td>
</tr>
</tbody>
</table>

Source

Fine, J. (1996), 'Iniciacion a los analisis de datos multidimensionales a partir de ejemplos', Notas de clase, Montevideo.

References

Brefort, A.(1982), 'Letude des races canines a partir de leurs caracteristiques qualitatives', HEC - Jouy en Josas
Description

Results of the mesure of some properties of twelve coffee cups

Usage

data(cafe)

Format

Object of class data.frame with 12 rows and 16 columns.

Source

References

centroids

Centroids of the Classes of a Partition

Description

It evaluates the centroids of a partition with the weights in rw

Usage

centroids(df,c1,rw=rep(1/nrow(df),nrow(df)))

Arguments

df object of class data.frame, with the data of variables or coordinates
c1 vector indicating the cluster of each element
rw weight of the rows of df, by default the same

Value

Object of class list with the following:
centroids class centroids
weights class weights
cr correlation ratios
chisq.carac

Author(s)

Campo Elias Pardo <cepardot@unal.edu.co>

Examples

data(iris)
centroids(iris[,5],iris[,5])

chisq.carac

Description

Chisquare tests are performed for the contingency tables crossing a qualitative variable named cl and the qualitative variables present in columns from df

Usage

chisq.carac(df,cl,thr=2,decr=TRUE)

Arguments

df data.frame, with factors contain the categories of the qualitative variables
c1 factor indicating the category of each subject
thr threshold of test value, if decr=TRUE, only the rows where tval >= thr are returned
decr if decr=TRUE the rows are returned in decreasing order

Value

Matrix with the following columns:

- chi2 chisquare statistic
- dfr degree of freedom of chi-square density
- pval p value
- tval quantil qnorm(pval,lower.tail=FALSE
- phi2 phi2=chi2/n

Author(s)

Campo Elias Pardo <cepardot@unal.edu.co>

Examples

data(BreedsDogs)
round(chisq.carac(BreedsDogs[,7],BreedsDogs[,7]),3)
round(chisq.carac(BreedsDogs[,7],BreedsDogs[,7],decr=FALSE),3)
cluster.carac

Cluster Characterization by Variables

Description

It makes the characterization of the classes or cluster considering the variables in tabla. These variables can be quantitative, qualitative or frequencies.

Usage

```r
cluster.carac( tabla, class, tipo.v="d", v.lim= 2, dn=3, dm=3, neg=TRUE)
```

Arguments

- **tabla**: object data.frame with variables of characterization, the variables must be of a single type (quantitative, qualitative or frequencies)
- **class**: vector that determines the partition of the table
- **tipo.v**: type of variables: quantitative("continuas"), qualitative ("nominales") or frequencies("frecuencia")
- **v.lim**: test value to show the variable or category like characteristic.
- **dn**: number of decimal digits for the p and test values.
- **dm**: number of decimal digits for the means.
- **neg**: if neg=TRUE, the variables or categories with negative test values are showed.

Details

For nominal or frequency variables it compares the percentage of the categories within each class with the global percentage. For continuous variables it compares the average within each class with the general average. Categories and variables are ordered within each class by the test values and it shows only those that pass the threshold v.lim.

Value

Object of class list. It has the characterization of each class or cluster.

Author(s)

Pedro Cesar del Campo <pcdelcampon@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co>, Mauricio Sadinle <msadinleg@unal.edu.co>

References

Examples

data(BreedsDogs)
BD.act <- BreedsDogs[-7] # active variables
BD.function <- subset(BreedsDogs, select=7)
carac(BD.act, BD.function, "ca", 2.0) # nominal variables

data(iris)
iris.act <- Fac.Num(iris)$numeric
class <- Fac.Num(iris)$factor
carac(iris.act, class, "co", 2.0) # continuous variables

frequency variables
data(BreedsDogs)
attach(BreedsDogs)
weig <- table(FUNC, WEIG)
weig <- data.frame(weig[,1], weig[,2], weig[,3])
carac(weig, row.names(weig), "Fr", 2) # frequency variables
detach(BreedsDogs)

Description

A group of students from Nanterre University (Paris X) were presented with a list of eleven colours: blue, yellow, red, white, pink, brown, purple, grey, black, green and orange. Each person in the group was asked to describe each color with one or more adjectives. A final list of 89 adjectives were associates with eleven colors.

Usage

data(ColorAdjective)

Format

Object of class data.frame with 89 rows and 11 columns.

Source

References

Fine, J. (1996), Iniciacion a los analisis de datos multidimensionales a partir de ejemplos, Notas de curso, Montevideo
LaTeX Tables of Coordinates and Aids to Interpretation of Principal Axis Methods

Description
Coordinates and aids of interpretation are wrote in tabular environment of LaTeX inside a Table

Usage
\begin{verbatim}
dudi.tex(dudi, job="", aidsC=TRUE, aidsR=TRUE, append=TRUE)
latex(obj, job="latex", tit="", lab="", append=TRUE, dec=1)
\end{verbatim}

Arguments
\begin{itemize}
\item \texttt{dudi} an object of class \texttt{dudi}
\item \texttt{job} a name to identify files and outputs
\item \texttt{aidsC} if it is \texttt{TRUE} the coordinates and aids of interpretation of the columns are printed
\item \texttt{aidsR} if it is \texttt{TRUE} the coordinates and aids of interpretation of the rows are printed
\item \texttt{append} if it is \texttt{TRUE} LaTeX outputs are appended on the file
\item \texttt{obj} object to export to LaTeX
\item \texttt{tit} title of the table
\item \texttt{lab} label for crossed references of LaTeX table
\item \texttt{dec} number of decimal digits
\end{itemize}

Details
\texttt{latex} function is used to build up a table. The aids of interpretation are obtained with \texttt{inertiaNdudi} of \texttt{ade4}. A file is wrote in the work directory (\texttt{job.txt}) with the following tables:

\begin{itemize}
\item \texttt{tvalp} eigenvalues
\item \texttt{c1} eigenvectors
\item \texttt{co} column coordinates
\item \texttt{col.abs} column contributions in percentage
\item \texttt{col.rel} quality of the representation of columns in percentage
\item \texttt{col.cum} accumulated quality of the representation of columns in percentage/100
\item \texttt{li} row coordinates
\item \texttt{row.abs} row contributions in percent
\item \texttt{row.rel} quality of the representation of rows in percentage
\item \texttt{row.cum} accumulated quality of the representation of rows in percentage/100
\end{itemize}
Fac.Num

Author(s)

Campo Elias PARDO <cepard@unal.edu.co>

Examples

data(ardeche)
coa1 <- dudi.coa(ardeche$tab, scann = FALSE, nf = 4)
dudi.tex(coa1, job="Ardeche")

Fac.Num

Division of qualitative and quantitative variables

Description

An object of class data.frame is divided into a list with two tables, one with quantitative variables and the other with qualitative variables.

Usage

Fac.Num(tabla)

Arguments

tabla

object of class 'data.frame'

Value

It returns one list with one or two objects of class data.frame with the following characteristics:

factor

table with the qualitative variables

numeric

table with the quantitative variables

Author(s)

Pedro Cesar Del Campo <pcdelcampon@unal.edu.co>

Examples

data(BreedsDogs)
Fac.Num(BreedsDogs)

data(iris)
Fac.Num(iris)
FactoClass

Combination of Factorial Methods and Cluster Analysis

Description

Performs the factorial analysis of the data and a cluster analysis using the nfcl first factorial coordinates.

Usage

```r
FactoClass( dfact, metodo, dfilu = NULL , nf = 2, nfcl = 10, k.clust = 3, 
  scanFC = TRUE , n.max = 5000 , n.clus = 1000 ,sign = 2.0, 
  conso=TRUE , n.indi = 25,row.w = rep(1, nrow(dfact)) )
```

S3 method for class 'FactoClass'

- `print(x, ...)`
- `analisis.clus(X,W)`

Arguments

- `dfact` object of class `data.frame`, with the data of active variables.
- `metodo` function of ade4 for ade4 factorial analysis, `dudi.pca`, Principal Component Analysis; `dudi.coa`, Correspondence Analysis; `witwit.coa`, Internal Correspondence Analysis; `dudi.acm`, Multiple Correspondence Analysis ...
- `dfilu` illustrative variables (default NULL)
- `nf` number of axes to use into the factorial analysis (default 2)
- `nfcl` number of axes to use in the classification (default 10)
- `k.clust` number of classes to work (default 3)
- `scanFC` if is TRUE, it asks in the console the values nf, nfcl y k.clust
- `n.max` when `rownames(dfact) >= n.max`, k-means is performed previous to hierarchical clustering (default 5000)
- `n.clus` when `rownames(fact) >= n.max`, the previous k-means is performed with `n.clus` groups (default 1000)
- `sign` threshold test value to show the characteristic variables and modalities
- `conso` when conso is TRUE, the process of consolidating the classification is performed (default TRUE)
- `n.indi` number of indices to draw in the histogram (default 25)
- `row.w` vector containing the row weights if `metodo<>dudi.coa`
- `x` object of class FactoClass
- `...` further arguments passed to or from other methods
- `X` coordinates of the elements of a class
- `W` weights of the elements of a class
Details

Lebart et al. (1995) present a strategy to analyze a data table using multivariate methods, consisting of an initial factorial analysis according to the nature of the compiled data, followed by the performance of mixed clustering. The mixed clustering combines hierarchical clustering using the Ward’s method with K-means clustering. Finally a partition of the data set and the characterization of each one of the classes is obtained, according to the active and illustrative variables, being quantitative, qualitative or frequency.

FactoClass is a function that connects procedures of the package ade4 to perform the analysis factorial of the data and from stats for the cluster analysis.

The function analisis.clus calculates the geometric characteristics of each class: size, inertia, weight and square distance to the origin.

For impression in LaTeX format see FactoClass.tex

To draw factorial planes with cluster see plotFactoClass

Value

object of class FactoClass with the following:

dudi object of class dudi from ade4 with the specifications of the factorial analysis
nfcl number of axes selected for the classification
k number of classes
indices table of indices obtained through WARD method
cor.clus coordinates of the clusters
clus.summ summary of the clusters
cluster vector indicating the cluster of each element
carac.cate cluster characterization by qualitative variables
carac.cont cluster characterization by quantitative variables
carac.frec cluster characterization by frequency active variables

Author(s)

Pedro Cesar del Campo <pcdelcampon@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co> http://www.docentes.unal.edu.co/cepardot, Ivan Diaz <ildiazm@unal.edu.co>, Mauricio Sadinle <msadinleg@unal.edu.co>

References

Examples

```r
# Cluster analysis with Correspondence Analysis
data(ColorAdjective)
FC.col <- FactoClass(ColorAdjective, dudi.coa)
6
10
5
FC.col
FC.col$dudi

# Cluster analysis with Multiple Correspondence Analysis
data(BreedsDogs)
BD.act <- BreedsDogs[-7]  # active variables
BD.ilu <- BreedsDogs[7]   # ilustrative variables
FC.bd <- FactoClass(BD.act, dudi.acm, k.clust = 4,
                     scanFC = FALSE, dfilu = BD.ilu, nfcl = 10)
FC.bd
FC.bd$clus.summ
FC.bd$indices
```

FactoClass.tex
Table of Coordinates, Aids of Interpretation of the Principal Axes and Cluster Analysis in LaTeX format.

Description

The coordinates, aids of interpretation and results of cluster analysis of an object of class FactoClass are written in tables for edition in LaTeX format and written in a file.

Usage

```r
FactoClass.tex(FC, job="", append=TRUE, dir = getwd(), p.clust = FALSE )

## S3 method for class 'FactoClass.tex'
print(x, ...)
latexDF(obj, job="latex",tit="",lab="",append=TRUE ,dec=1,
        dir = getwd(), to.print = TRUE )
roundDF(tabla,dec=1)
```
Arguments

FC object of class FactoClass.
job A name to identify the exit.
append if is 'TRUE' the exit in LaTeX format is added to the file.
dir name of the directory in which the file is kept.
p.clust the value of this parameter is 'TRUE' or 'FALSE' to print or not the cluster of each element.
tabla object of class 'data frame'.
dec number of decimal.
x object of class FactoClass.
... further arguments passed to or from other methods
obj object of class data.frame.
tit title of the table in LaTeX format.
lab label of the table in LaTeX format.
to.print if it is 'TRUE' the table is also printed in the console.

Details

This function helps with the construction of tables in LaTeX format. Besides, it allows an easy reading of the generated results by FactoClass. The function latexDF is an entrance to xtable and turns an object of class data.frame a table in LaTeX format.

Value

object of class FactoClass.tex with the following characteristics:
tvalp eigenvalues * 1000.
c1 eigenvectors.
co coordinates of the columns.
col.abs contribution of each column to the inertia of the axis (percentage).
col.rel quality of representation of each column (percentage).
col.cum quality of representation of each column accumulated in the subspace (percentage).
li coordinates of the rows.
row.abs contribution of each rows to the inertia of the axis (percentage).
row.rel quality of representation of each rows (percentage).
row.cum quality of representation of each rows accumulated in the subspace (percentage).
indices table of indices of level generated by the Ward cluster analysis.
cor.clus coordinates of the center of gravity of each cluster.
clus.summ summary of the cluster.
carac.cate cluster characterization by qualitative variables.
carac.cont cluster characterization by quantitative variables.
cluster vector indicating the cluster of each element.
Author(s)

Pedro Cesar del Campo <pcdelcampon@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co>

Examples

```r
data(BreedsDogs)
BD.act <- BreedsDogs[-7]  # active variables
BD.ilu <- BreedsDogs[7]   # illustrative variables
# MCA
FaCl <- FactoClass( BD.act, dudi.acm,
                    scanFC = FALSE, dfilu = BD.ilu, nfcl = 10, k.clust = 4 )
FactoClass.tex(FaCl, job="BreedsDogs", append=TRUE, p.clust = TRUE)
```

icfes08

Department by Levels of Schools in Colombia

Description

Contingency Table that classifies the schools of Colombia by departments and level of the schools agree with the performance of its students.

Usage

data(icfes08)

Format

Object whit class data.frame of 29 rows and 12 columns.

Source

ICFES Colombia

References

kmeansW

K-means with Weights of the Elements

Description

It is a modification of kmeans Hartigan-Wong algorithm to consider the weight of the elements to classify.

Usage

```r
kmeansW(x, centers, weight = rep(1,nrow(x)),
       iter.max = 10, nstart = 1)
```

Arguments

- `x` A numeric vector, matrix or data frame.
- `centers` Either the number of clusters or a set of initial (distinct) cluster centres. If a number, a random set of (distinct) rows in `x` is chosen as the initial centres.
- `weight` weight of the elements of `x`. by default the same.
- `iter.max` The maximum number of iterations allowed.
- `nstart` If centers is a number, how many random sets should be chosen?

Details

With the 'Hartigan-Wong’ algorithm, this function performs the *K-means* clustering diminishing inertia intra classes. In this version the Fortran code kmnsW.f was changed by C++ code kmeanw.cc programed by Camilo Jose Torres, modifing C code programed by Burkardt.

Value

object of class `FactoClass` with the following characteristics:

- `cluster` vector indicating the cluster of each element.
- ...

Author(s)

Camilo Jos? Torres <cjtorresj@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co>

References

Examples

data(Bogota)
ac.bog <- Bogota[-1]
il.bog <- Bogota[1]

acs <- dudi.coa(ac.bog, nf=6 , scannf = FALSE)
kmeansW(acs$li, 7, acs$lw)

Description

Modification of an object of class list into an object of class data.frame.

Usage

list.to.data(lista,nvar="clasif")

Arguments

lista list that contains several data.frame of the same structure.
nvar (Optional) Name of the new variable that considers the partition given by the elements of the list.

Details

This function turns an object of class list into an object of class data.frame, this function is used internally to create objects of class data.frame to make tables in \LaTeX\ format.

Value

Object of class data.frame.

Author(s)

Pedro Cesar Del Campo <pcdelcampon@unal.edu.co>

Examples

A <- data.frame(r1=rnorm(5),r2=rnorm(5))
B <- data.frame(r1=rnorm(15),r2=rnorm(15))

LL <- list(A=A,B=B)
LL
plot.dudi

Factorial Planes from Objects of Class dudi

Description

It plots factorial planes from objects of class dudi.

Usage

```
## S3 method for class 'dudi'
plot(x, ex=1, ey=2, xlim=NULL, ylim=NULL, main=NULL, rotx=FALSE, roty=FALSE,
     roweti=row.names(dudi$li), coleti=row.names(dudi$co),
     axislabel=TRUE, col.row="black", col.col="blue", cex=0.8,
     cex.row=0.8, cex.col=0.8, all.point=TRUE, Trow=TRUE, Tcol=TRUE,
     cframe=1.2, ucal=0, cex.global=1, infaxes="out", ...)
```

Arguments

- **x**: object of type dudi
- **ex**: number identifying the factor to be used as horizontal axis. Default 1
- **ey**: number identifying the factor to be used as vertical axis. Default 2
- **xlim**: the x limits (x1, x2) of the plot
- **ylim**: the y limits of the plot
- **main**: graphic title
- **rotx**: TRUE if you want change the sign of the horizontal coordinates. Default FALSE
- **roty**: TRUE if you want change the sign of the vertical coordinates. Default FALSE
- **roweti**: selected row points for the graphic. Default all points
- **coleti**: selected column points for the graphic. Default all points
- **axislabel**: if it is TRUE the axis information is written
- **col.row**: color for row points and row labels. Default "black"
- **col.col**: color for column points and column labels. Default "blue"
- **cex**: global scale for the labels. Default cex=0.8
- **cex.row**: scale for row points and row labels. Default cex.row=0.8
- **cex.col**: scale for column points and column labels. Default cex.col=0.8
- **all.point**: If it is TRUE, all points are outlined. Default all.point=TRUE
- **Trow**: if it is TRUE the row points are outlined. Default TRUE
- **Tcol**: if it is TRUE the column points are outlined. Default TRUE
Plotct

Row and Column Profiles of a Contingency Table

Description

It plots barplot profiles of rows or columns from a contingency table including marginal profiles.

Usage

```
plotct(x, profiles="both", legend.text=TRUE, tables=FALSE, nd=1,...)
```
plotFactoClass

Arguments

- **x**
 - contingency table
- **profiles**
 - select profiles: "both" file and column profiles in two graph devices, "row" only row profiles, "col" only column profiles
- **legend.text**
 - if it is TRUE a box with legends is included at the right
- **tables**
 - logical, if TRUE tables with marginals are returned
- **nd**
 - number of decimals to profiles as percentages
- **...**
 - further arguments passed to or from other methods

Details

Plot row profiles in horizontal form and columns profiles in vertical form

Value

if tables=TRUE, object of class list with the following:

- **ct**
 - contingency table with row and column marginals
- **perR**
 - row profile with marginal, in percent
- **perC**
 - column profile with marginal, in percent

Author(s)

Camilo Jose Torres <cjtorresj@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co>
http://www.docentes.unal.edu.co/cepardot

Examples

```r
mycolors<-colors()[-c(1,26,32,37,52,57,68,73,74,81,82,84,88,100)]
data(Bogota)
plotct(Bogota[,2:7],col=mycolors)
# return tables with marginals
tabs <- plotct(Bogota[,2:7],col=mycolors,tables=TRUE,nd=0)
```

plotFactoClass
Factorial Planes Showing the Classes

Description

For objects of class FactoClass it graphs a factorial plane showing the center of gravity of the cluster, and identifying with colors the cluster to which each element belongs.
Usage

plotFactoClass(FC, x=1, y=2, xlim=NULL, ylim=NULL, rotx=FALSE, roty=FALSE, roweti=row.names(dudi$li), coleti=row.names(dudi$co), titre=NULL, axislabel=TRUE, col.row=1:FC$k, col.col="blue", cex=0.8, cex.row=0.8, cex.col=0.8, all.point=TRUE, Trow=TRUE, Tcol=TRUE, cframe=1.2, ucal=0, cex.global=1, infaxes="out", nclus=paste("cl", 1:FC$k, sep=""), cex.clu=cex.row, cstar=1)

Arguments

FC
 object of class FactoClass.

x
 number indentifying the factor to be used as horizontal axis. Default x=1

y
 number indentifying the factor to be used as vertical axis. Default y=2

xlim
 the x limits (x1, x2) of the plot

ylim
 the y limits of the plot

rotx
 TRUE if you want change the sign of the horizontal coordinates (default FALSE).

roty
 TRUE if you want change the sign of the vertical coordinates (default FALSE).

roweti
 selected row points for the graphic. Default all points.

coleti
 selected column points for the graphic. Default all points.

titre
 graphics title.

axislabel
 if it is TRUE the axis information is written.

col.row
 color for row points and row labels. Default 1:FC$k.

col.col
 color for column points and column labels. Default "grey55".

cex
 global scale for the labels. Default cex=0.8.

cex.row
 scale for row points and row labels. Default cex.row=0.8.

cex.col
 scale for column points and column labels. Default cex.col=0.8.

cex.clu
 scale for cluster points and cluster labels. (default cex.row).

all.point
 if if is TRUE, all points are outlined. Default all.point=TRUE.

Trow
 if it is TRUE the row points are outlined. Default TRUE.

Tcol
 if it is TRUE the column points are outlined. Default TRUE.

nclus
 labels for the clusters (default cl1, cl2, ...)

cframe
 scale for graphics limits

ucal
 quality Representation Threshold in the plane. Default ucal=0

cex.global
 scale for the label sizes

infaxes
 place to put the axes information: "out","in","no". Default infaxes="out". If infaxes="out" the graphic is similar to FactoMineR graphics, otherwise the style is similar to the one in ade4, without axes information when infaxes="no"

cstar
 length of the rays between the centroids of the classes and their points
It draws the factorial plane with the clusters. Only for objects FactoClass see FactoClass. The factorial plane is drawn with planfac and the classes are projected with s.class of ade4.

Value

It draws the factorial plane x, y using co, li of the object of class FactoClass. If ucal > 0, the function inertia.dudi is used to calculate the quality of representation in the plane.

Author(s)

Campo Elías Pardo <cepardot@unal.edu.co> Pedro Cesar del Campo <pcdelcampon@unal.edu.co>,

Examples

data(Bogota)
Bog.act <- Bogota[-1]
Bog.ilu <- Bogota[1]

FC.Bogota<-FactoClass(Bog.act, dudi.coa,Bog.ilu,nf=2,nfcl=5,k.clust=5,scanFC=FALSE)

plotFactoClass(FC.Bogota,titre="First Factorial Plane from the SCA of Bogota's Blocks",
col.row=c("maroon2","orchid4","darkgoldenrod2","dark red","aquamarine4"))

plotfp

Factorial Planes from Coordinates

Description

It plots factorial planes from a coordinate table

Usage

plotfp(co,x=1,y=2,eig=NULL,cal=NULL,ucal=0,xlim=NULL,ylim=NULL,main=NULL,
 rotx=FALSE,roty=FALSE,eti=row.names(co),
 axislabel=TRUE,col.row="black",cex=0.8,cex.row=0.8,
 all.point=TRUE,cframe=1.2,cex.global=1,infaxes="out",asp=1)

Arguments

co matrix or data.frame with coordinates
x the component like horizontal axis
y the component like vertical axis
eig numeric with the eigenvalues
plotfp

cal matrix or data.frame with the square cosinus
ucal quality representation threshold (percentage) in the plane. Default ucal=0
xlim the x limits (x1, x2) of the plot
ylim the y limits of the plot
main graphic title
rotx TRUE if you want change the sign of the horizontal coordinates. Default FALSE
roty TRUE if you want change the sign of the vertical coordinates. Default FALSE
eti selected row points for the graphic. Default all points
axislabel if it is TRUE the axis information is written
col.row color for row points and row labels. Default "black"
cex global scale for the labels. Default cex=0.8
cex.row scale for row points and row labels. Default cex.row=0.8
all.point If if is TRUE, all points are outlined. Default all.point=TRUE
cframe scale for graphic limits
cex.global scale for the label sizes
infaxes place to put the axes information: "out","in","no". Default infaxes="out". If infaxes="out" the graphic is similar to FactoMineR graphics, otherwise the style is similar to the one in ade4, without axes information when infaxes="no"
asp the y/x aspect ratio

Details

Plot the selected factorial plane.

Value

It graphs the factorial plane x,y using co and optional information of eigenvalues and representation quality of the points. If ucal > 0, only the points with the quality of representation on the plane bigger than ucal are pointed

Author(s)

Campo Elias Pardo <cepar@unal.co>

http://www.docentes.unal.edu.co/cepar

Examples

data(Bogota)
ca <- dudi.coa(Bogota[,2:7],scannf=FALSE,nf=2)
plotfp(ca$li,eig=ca$eig,main="First Factorial Plane")
plotpairs

Modified pairs plot

Description

Modified pairs plot: marginal kernel densities in diagonal, bivariated kernel densities in triangular superior; and scatter bivariate plots in triangular inferior

Usage

```
plotpairs(X, maxg=5, cex=1)
```

Arguments

- `X` matrix or data.frame of numeric columns
- `maxg` maximum number of variables to plot
- `cex` size of the points in dispersion diagrams

Details

Plot row profiles in horizontal form and columns profiles in vertical form

Value

The function does not return values

Author(s)

Campo Elias Pardo <cepardot@unal.edu.co>

Examples

```
data(iris)
plotpairs(iris[, -5])
```

stableclus

Stable clusters for cluster analysis

Description

Performs Stable Cluster Algorithm for cluster analysis, using factorial coordinates from a dudi object

Usage

```
stableclus(dudi, part, k.clust, ff.clus=NULL, bplot=TRUE, kmns=FALSE)
```
Arguments

- **dudi**: A dudi object, result of a previous factorial analysis using ade4 or FactoClass
- **part**: Number of partitions
- **k.clust**: Number of clusters in each partition
- **ff.clus**: Number of clusters for the final output, if NULL it asks in the console (Default NULL)
- **bplot**: if TRUE, prints frequencies barplot of each cluster in the product partition (Default TRUE)
- **kmns**: if TRUE, the process of consolidating the classification is performed (Default FALSE)

Details

Diday (1972) (cited by Lebart et al. (2006)) presented a method for cluster analysis in an attempt to solve one of the inconveniences with the \textit{kmeans} algorithm, which is convergence to local optims. Stable clusters are built by performing different partitions (using \textit{kmeansw} algorithm), each one with different initial points. The groups are then formed by selecting the individuals belonging to the same cluster in every partition.

Value

object of class \textit{stableclus} with the following characteristics:

- **cluster**: vector indicating the cluster of each element.
 ...

Author(s)

Carlos Andres Arias <caariasr@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co>

References

Examples

data(ColorAdjective)
FCcol <- FactoClass(ColorAdjective, dudi.coa,nf=6,nfcl=10,k.clust=7,scanFC = FALSE)
acs <- FCcol$dudi
stableclus(acs,3,3,4,TRUE,TRUE)

supqual

Projection of Qualitative Variables in PCA and MCA

Description

It returns the coordinates and aids to the interpretation when one or more qualitative variables are projected as illustrative in PCA or MCA.

Usage

`supqual(du, qual)`

Arguments

- `du`: a object of class “pca” or “acm” (“dudi”) obtained with `dudi.pca` or `dudi.acm` of package ade4
- `qual`: a data.frame of qualitative variables as factors

Value

object of class list with the following:

- `wcat`: weight of the categories in PCA case
- `ncat`: frequency of the categories in MCA case
- `dis2`: square distance to the origin from the complete space
- `coor`: factorial coordinates
- `tv`: test values
- `cos2`: square cosinus
- `scr`: relation of correaltion

Author(s)

Campo Elias Pardo <cepardot@unal.edu.co>
Examples

```r
# in PCA
data(admi)
Y<-admi[,2:6]
pcaY<-dudi.pca(Y,scannf=FALSE)
Yqual<-admi[,c(1,8)]
supqual(pcaY,Yqual)
# in MCA
Y<-admi[,c(8,11,9,10)]
mcaY<-dudi.acm(Y,scannf=FALSE)
supqual(mcaY,admi[,c(1,13)])
```

Description

The newspaper of the students of the University of Chapel Hill (North Carolina) conducted a survey of student opinions about the Vietnam War in May 1967. Responses were classified by sex, year in the program and one of four opinions:

- **A** defeat power of North Vietnam by widespread bombing and land invasion
- **B** follow the present policy
- **C** withdraw troops to strong points and open negotiations on elections involving the Viet Cong
- **D** immediate withdrawal of all U.S. troops

Usage

data(Vietnam)

Format

The 3147 consulted students were classified considering the sex, year of study and chosen strategy, originating a contingency table of 10 rows: M1 to M5 and F1 to F5 (the years of education are from 1 to 5 and sexes are male (M) and female (F)) and 4 columns A, B, C and D.

Source

Fine, J. (1996), ‘Iniciación a los análisis de datos multidimensionales a partir de ejemplos’, Notes of course, Montevideo

References

ward.cluster

Hierarchic Classification by Ward’s Method

Description

Performs the classification by Ward’s method from the matrix of Euclidean distances.

Usage

```
ward.cluster(dista, peso = NULL, plots = TRUE, h.clust = 2, n.indi = 25)
```

Arguments

- `dista`: matrix of Euclidean distances (class(dista)="dist").
- `peso`: (Optional) weight of the individuals, by default equal weights
- `plots`: it makes dendrogram and histogram of the Ward’s method
- `h.clust`: if it is ’0’ returns a object of class `hclust` and a table of level indices, if it is ’1’ returns a object of class `hclust`, if it is ’2’ returns a table of level indices.
- `n.indi`: number of indices to draw in the histogram (default 25).

Details

It is an entrance to the function `h.clus` to obtain the results of the procedure presented in Lebart et al. (1995). Initially the matrix of distances of Ward of the elements to classify is calculated:

The Ward’s distance between two elements to classify i and l is given by:

$$ W(i,l) = (m_i * m_l) / (m_i + m_l) * \text{dist}(i,l)^2 $$

where m_i and m_l are the weights and dist(i,l) is the Euclidean distance between them.

Value

It returns an object of class `hclust` and a table of level indices (depending of `h.clust`). If `plots = TRUE` it draws the indices of level and the dendrogram.

Author(s)

Pedro Cesar del Campo <pcdelcampon@unal.edu.co>, Campo Elias Pardo <cepardot@unal.edu.co>

http://www.docentes.unal.edu.co/cepardot

References

Examples

data(ardeche)
cia <- dudi.coa(ardeche$tab, scannf=FALSE, nf=4)

ward.cluster(dista = dist(ca$li), peso=ca$lw)

dev.new()
HW <- ward.cluster(dista = dist(ca$li), peso=ca$lw ,h.clust = 1)
plot(HW)
rect.hclust(HW, k=4, border="red")

<table>
<thead>
<tr>
<th>Whisky</th>
<th>Whisky example</th>
</tr>
</thead>
</table>

Description

Data frame with five features of 35 whisky brands:

- **price** in Frace Francs
- **malt** proportion in percentage
- **type** by malt proportion: low, medium, pure
- **aging** in years
- **taste** mean score of a taste panel

Usage

```
data(Whisky)
```

Source

Fine, J. (1996), 'Iniciacion a los analisis de datos multidimensionales a partir de ejemplos', Notes of course, Montevideo
Index

*Topic **cluster**
- FactoClass, 12
- kmeansW, 17
- plotFactoClass, 21
- stableclus, 25

*Topic **datasets**
- adm, 3
- Bogota, 4
- BreedsDogs, 5
- cafe, 5
- ColorAdjective, 9
- icfes08, 16
- Vietnam, 28
- Whisky, 30

*Topic **hplot**
- cluster.caparac, 8
- plot.dudi, 19
- plotct, 20
- plotFactoClass, 21
- plotfp, 23
- plotpairs, 25
- supqual, 27
- ward.cluster, 29

*Topic **multivariate**
- centroids, 6
- chisq.carac, 7
- cluster.carac, 8
- dudi.tex, 10
- Fac.Num, 11
- FactoClass, 12
- FactoClass.tex, 14
- kmeansW, 17
- list.to.data, 18
- plot.dudi, 19
- plotFactoClass, 21
- plotfp, 23
- stableclus, 25
- ward.cluster, 29

addgrids3d, 2

admi, 3
analisis.clus (FactoClass), 12

Bogota, 4
BreedsDogs, 5
cafe, 5
centroids, 6
chisq.carac, 7
cluster.carac, 8
ColorAdjective, 9
dudi.tex, 10
Fac.Num, 11
FactoClass, 12, 13, 22, 23
FactoClass.tex, 13, 14
icfes08, 16
kmeansW, 17
kmnsW (kmeansW), 17
latex (dudi.tex), 10
latexDF (FactoClass.tex), 14
list.to.data, 18
plot.dudi, 19
plotct, 20
plotFactoClass, 13, 21
plotfp, 23
plotpairs, 25
print.FactoClass (FactoClass), 12
print.FactoClass.tex (FactoClass.tex), 14
roundDF (FactoClass.tex), 14
stableclus, 25
supqual, 27
sutil.grid (plot.dudi), 19
Vietnam, 28

ward.cluster, 29
Whisky, 30