Package ‘CoClust’
April 15, 2015

Title Copula Based Cluster Analysis
Date 2015-04-15
Version 0.3-1
Author Francesca Marta Lilja Di Lascio, Simone Giannerini
Depends R (>= 2.15.1), methods, copula
Imports gtools
Description Copula Based Cluster Analysis.
Maintainer Simone Giannerini <simone.giannerini@unibo.it>
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2015-04-15 21:22:25

R topics documented:

CoClust ... 1
CoClust-class ... 4

Index

CoClust Copula-Based Clustering Algorithm

Description
Cluster analysis based on copula functions

Usage
CoClust(m, dimset = 2:5, noc = 4, copula = "frank", fun = median,
method.ma = c("empirical", "pseudo"), method.c = c("ml", "mpl", "irho", "itau"),
dfree = NULL, writeout = 5, penalty = c("BICK", "AICK", "LL"), ...)
Arguments

- **m**: a data matrix.
- **dimset**: the set of dimensions for which the function tries the clustering.
- **noc**: sample size of the set for selecting the number of clusters.
- **copula**: a copula model. This should be one of "normal", "t", "frank", "clayton" and "gumbel". See the Details section.
- **fun**: combination function of the pairwise Spearman's rho used to select the k-plets. The default is median
- **method.ma**: estimation method for margins. See the Details section.
- **method.c**: estimation method for copula. See `fitCopula`.
- **dfree**: degrees of freedom for the t copula.
- **writeout**: writes a message on the number of allocated observations every writeout observations.
- **penalty**: Specifies the likelihood criterion used for selecting the number of clusters.
- **...**: further parameters for `fitCopula`.

Details

Usage for Frank copula:

```
CoClust(m, nmaxmarg = 2:5, noc = 4, copula = "frank", fun = median, method.ma = c("gaussian", "empirical"), method.c = "mpl", penalty = "BICk", ...)```

CoClust is a clustering algorithm that, being based on copula functions, allows to group observations according to the multivariate dependence structure of the generating process without any assumptions on the margins.

For each $k$ in **dimset** the algorithm builds a sample of **noc** observations (rows of the data matrix **m**) by using the matrix of Spearman’s rho correlation coefficients which are combined by means of the function **fun** (median by default). The number of clusters $K$ is selected by means of a criterion based on the likelihood of the copula fit. The switch **penalty** allows to select 3 different criteria: The choice **LL** corresponds to using the likelihood without penalty terms. Then, the remaining observations are allocated to the clusters as follows: 1. selects a $K$-plet of observations on the basis of **fun** applied to the pairwise Spearman’s rho; 2. allocates or discards the $K$-plet on the basis of the likelihood of the copula fit.

The estimation approach for the copula fit is semiparametric: a range of nonparametric margins and parametric copula models can be selected by the user. The CoClust algorithm does not require to set a priori the number of clusters nor it needs a starting classification.

Notice that the dependence structure for the Gaussian and the $t$ copula is set to exchangeable. Non structured dependence structures will be allowed in a future version.

Value

An object of S4 class "CoClust", which is a list with the following elements:

- **Number.of.Clusters**: the number $K$ of identified clusters.
CoClust

Index.Matrix a n.obs by (K+1) matrix where n.obs is the number of observations put in each cluster. The matrix contains the row indexes of the observations of the data matrix m. The last column contains the log-likelihood of the copula fit.

Data.Clusters the matrix of the final clustering.

Dependence a list containing:

Model the copula model used for the clustering.
Param the estimated dependence parameter between clusters.
Std.Err the standard error of Param.
P.val the p-value associated to the null hypothesis H_0: \theta=0.

LogLik the maximized log-likelihood copula fit.
Est.Method the estimation method used for the copula fit.
Opt.Method the optimization method used for the copula fit.
LLC the value of the LogLikelihood Criterion for each k in dimset.
Index.dimset a list that, for each k in dimset, contains the index matrix of the initial set of nk observations used for selecting the number of clusters, together with the associated loglikelihood.

Note

The final clustering is composed of K groups in which observations of the same group are independent whereas the observations that belong to different groups and that form a K-plet are dependent.

Author(s)

Francesca Marta Lilja Di Lascio <marta.dilascio@unibz.it>,
Simone Giannerini <simone.giannerini@unibo.it>

References


Examples

```
build a 3-variate copula with different margins
(Gaussian, Gamma, Beta)
##
1. generates a data matrix xm with 15 rows and 21 columns and
builds the matrix of the true cluster indexes
```
## CoClust-class

### Description

A class for CoClust and its extensions

### Objects from the Class

Objects can be created by calls of the form `new("CoClust", ...)`. 

---

```
3. applies the CoClust to the rows of xm and recovers the
multivariate dependence structure of the data
#

Step 1. ****************************

n <- 105
n.col <- 21
n.marg <- 3
n.row <- n*n.marg/n.col

theta <- 10
copula <- frankCopula(theta, dim = n.marg)
mymvdc <- mvdc(copula, c("norm", "gamma", "beta"),
 list(list(mean=7, sd=2),
 list(shape=3, rate=4), list(shape=2, shape2=1)))

Step 2. ****************************

set.seed(11)
x.samp <- rmvdc(n, mymvdc)
xm <- matrix(x.samp, nrow = n.row, ncol = n.col, byrow=TRUE)

index.true <- matrix(1:15,5,3)
colnames(index.true) <- c("Cluster 1","Cluster 2","Cluster 3")

Step 3. ****************************

clust <- CoClust(xm, dimset = 2:4, noc=2, copula="frank",
 method.m.a="empirical", method.c="ml",writeout=1)

clust
clust@"Number.of.Clusters"
clust@"Dependence"$Param
clust@"Data.Clusters"
index.clust <- clust@"Index.Matrix"

compare with index.true
index.clust
index.true
```
Slots

Number.of.Clusters: Object of class "integer". The number \( K \) of identified clusters.

Index.Matrix: Object of class "matrix". A \( n obs \) by \( (K+1) \) matrix where \( n obs \) is the number of observations put in each cluster. The matrix contains the row indexes of the observations of the data matrix \( m \). The last column contains the log-likelihood of the copula fit.

Data.Clusters: Object of class "matrix". The matrix of the final clustering.

Dependence: Object of class "list". The list contains:

- Model: the copula model used for the clustering.
- Param: the estimated dependence parameter between clusters.
- Std.Err: the standard error of Param.
- P.val: the p-value associated to the null hypothesis \( H_0: \theta = 0 \).

loglik: Object of class "numeric". The maximized log-likelihood copula fit.

Est.Method: Object of class "character". The estimation method used for the copula fit.

Opt.Method: Object of class "character". The optimization method used for the copula fit.

LLC: Object of class "numeric". The value of the LogLikelihood Criterion for each \( k \) in \( \text{dimset} \).

Index.dimset: Object of class "list". A list that, for each \( k \) in \( \text{dimset} \), contains the index matrix of the initial set of \( nk \) observations used for selecting the number of clusters, together with the associated loglikelihood.

Methods

No methods defined with class "CoClust" in the signature.

Author(s)

Francesca Marta Lilja Di Lascio <marta.dilascio@unibz.it>,
Simone Giannerini <simone.giannerini@unibo.it>

References


See Also

See Also CoClust and copula.

Examples

showClass("CoClust")
Index

*Topic **classes**
  CoClust-class, 4

*Topic **cluster**
  CoClust, 1

*Topic **multivariate**
  CoClust, 1

CoClust, 1, 5
CoClust-class, 4
copula, 5

fitCopula, 2