Package ‘CHsharp’

October 16, 2015

Version 0.4
Title Choi and Hall Style Data Sharpening
Author Douglas Woolford and John Braun
Maintainer John Braun <braun@stats.uwo.ca>
Description Functions for use in perturbing data prior to use of nonparametric smoothers and clustering.
LazyLoad true
LazyData true
Depends scatterplot3d, KernSmooth
License GPL-3
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-10-16 00:51:37

R topics documented:

d ... 2
lambda ... 2
MISE .. 3
numericalDerivative .. 3
penlocreg .. 4
pllr .. 5
SecondDerivativePenalty 6
sharp1d .. 6
sharp2d .. 7
sharp3d ... 9
sharp3dB ... 10
sharpen ... 11

Index 12
A really neat data set

Description
This revolutionizes the scientific community’s worldview.

Usage
data(d)

Author(s)
Douglas G. Woolford

Penalty Parameter Selector

Description
Data-driven selector of the penalty parameter, given a bandwidth.

Usage
lambda(x, y, h, d, xgrid, A, B, niterations=2)

Arguments

- x: numeric vector of predictor observations
- y: numeric vector of observed responses
- h: numeric bandwidth
- d: numeric degree of local polynomial regression
- xgrid: numeric vector of grid points where regression function is to be evaluated
- A: numeric matrix, Smoother matrix
- B: numeric matrix, based on penalty
- niterations: number of iterations

Value
a numeric vector of smoothing parameters, corresponding to successive iterates

Author(s)
W.J. Braun
MISE

Approximate Mean Integrated Squared Error

Description

MISE for penalized sharpened regression based on trapezoid integration.

Usage

`MISE(x, xgrid, sigma2, lambda, h, g, A, B)`

Arguments

- `x`: numeric explanatory vector
- `xgrid`: numeric vector
- `sigma2`: numeric vector of variance(s)
- `lambda`: numeric penalty constant
- `h`: numeric bandwidth
- `g`: regression function, numeric-valued
- `A`: numeric matrix, smoother
- `B`: numeric matrix, based on penalty

Value

A vector containing the finite sample variance, squared bias, and mean integrated squared error.

Author(s)

W.J. Braun

numericalDerivative

Numerical Derivative of Smooth Function

Description

Cubic spline interpolation of columns of a matrix for purpose of computing numerical derivatives at a corresponding sequence of gridpoints.

Usage

`numericalDerivative(x, g, k, delta=.001)`
Arguments

- **x**: numeric vector
- **g**: numeric-valued function of x
- **k**: number of derivatives to be computed
- **delta**: denominator of Newton quotient approximation

Value

numeric vector of kth derivative of g(x)

Author(s)

W.J. Braun

penlocreg

Penalized Local Polynomial Regression

Description

Data sharpened local polynomial regression subject to a given penalty.

Usage

penlocreg(x, y, xgrid, degree = 0, h, lambda, L, ...)

Arguments

- **x**: numeric vector of predictor observations
- **y**: numeric vector of observed responses
- **xgrid**: numeric vector of grid points where regression function is evaluated
- **degree**: numeric vector of local polynomial regression degree
- **h**: numeric bandwidth
- **lambda**: numeric penalty constant
- **L**: function related to penalty
- **...**: additional arguments, as required by L

Value

a list containing the original observed predictor values, the sharpened responses, the smoother matrix and the penalty matrix
Examples

```r
xx <- faithful$waiting
yy <- faithful$eruptions
h <- dpill(xx,yy)/2; lam <- 20 # tuning parameter selections
yy.pen <- penlocreg(xx, yy, seq(min(xx), max(xx), len=401), lambda=lam, degree=1, h = h, L = SecondDerivativePenalty)
plot(xx, yy, xlab="waiting", ylab="eruptions", col="grey")
title("Old Faithful")
points(yy.pen, col=2, cex=.6) # sharpened data points
lines(loccpoly(xx, yy, bandwidth=h*2, degree=1), lwd=2) # local linear estimate
lines(loccpoly(yy.pen$x, yy.pen$y, bandwidth=h, degree=1), col=2, lwd=2) # sharpened estimate
```

Usage

```r
pllr(x, y)
```

Arguments

- `x` numeric vector of predictor observations
- `y` numeric vector of observed responses

Value

a list consisting of the x and y coordinates of the estimated regression function.

Author(s)

W.J. Braun
SecondDerivativePenalty

A Roughness Penalty Based on the Squared Second Derivative

Description

A roughness penalty function based on squared second derivatives evaluated numerically. This is a possible template function for other types of penalties.

Usage

SecondDerivativePenalty(xgrid, a)

Arguments

xgrid vector of length m, must be increasing
a a function of one numeric variable

Value

a vector of second derivatives evaluated at the points of xgrid

Author(s)

W.J. Braun

sharp1d

Data Sharpening for Density Estimation

Description

Application of Choi and Hall’s (1999) data sharpening method for univariate data, for use prior to density estimation.

Usage

sharp1d(x, h, v = 1)

Arguments

x the x coordinates of the data
h the bandwidth for sharpening in the direction of the x axis
v a positive integer representing the number of iterations to perform
sharp2d

Value

Returns a vector containing the sharpened points `x.sharp`.

Author(s)

Douglas G. Woolford, W. John Braun

References

Examples

```r
# Example 1:
y <- c(rnorm(50, -1, 1), rnorm(50, 2, 2), rnorm(100, 0, .5))
data.sharp1 <- sharp2d(y, 5, 1)
data.sharp2 <- sharp2d(y, 5, 2)
# original data:
plot(density(y, bw=5))
# sharpened data after 1 iterations:
lines(density(data.sharp1, bw=5), col=2)
# sharpened data after 2 iterations:
lines(density(data.sharp2, bw=5), col=4)

x <- rt(100, df=3)
h <- dpik(x)

# Example 2:
curve(dt(x, df=3), from=-4, to=4)
lines(bkde(x, bandwidth=h), col=2, lty=2)

x.sharp <- sharp2d(x, h, 1)
lines(bkde(x.sharp, bandwidth=h), col=3, lty=3)

x.sharp2 <- sharp2d(x, h, 2)
lines(bkde(x.sharp2, bandwidth=h), col=4, lty=4)

x.sharp3 <- sharp2d(x, h, 3)
lines(bkde(x.sharp3, bandwidth=h), col=5, lty=5)
```

Description

Identifies the centres of clusters for 2-dimensional data using a converged form of Choi and Hall’s (1999) data sharpening method.
Usage

sharp2d(x, y, hspace = 1, htime = 1, v = 1)

Arguments

x
the x coordinates of the data

y
the y coordinates of the data

hspace
the bandwidth for sharpening in the direction of the x axis

htime
the bandwidth for sharpening in the y direction

v
a positive integer representing the number of iterations to perform

Details

Identifies the centres of clusters based on a converged form of Choi and Hall’s data sharpening method. This function was originally built for identifying clusters in space-time where space is the x-y plane and time is the z-axis.

Value

Returns a (number of data points x 2) data frame containing the sharpened points x.sharp and y.sharp, respectively.

Author(s)

Douglas G. Woolford, W. John Braun

References

Examples

```r
x <- 1:200
y <- c(rnorm(50,-1,1), rnorm(50,2,2), rnorm(100,0,.5))
data.sharp5 <- sharp2d(x, y, 5, 10, 5)
data.sharp10 <- sharp2d(x, y, 5, 10, 10)
# original data:
plot(x, y)
# sharpened data after 5 iterations:
points(data.sharp5$x.sharp, data.sharp5$y.sharp, col=2, pch=19)
# sharpened data after 10 iterations:
points(data.sharp10$x.sharp, data.sharp10$y.sharp, col=4, pch=19)
```
Identify Cluster Centres for 3-dimensional Data via Data Sharpening

Description

Identifies the centres of clusters for 3-dimensional data using a convergent form of Choi and Hall’s (1999) data sharpening method.

Usage

sharp3d(x, y, z, hspace = 1, htime = 1, v = 1)

Arguments

x the x coordinates of the data
y the y coordinates of the data
z the z coordinates of the data
hspace the bandwidth for sharpening in the direction of the x-y plane
htime the bandwidth for sharpening in the z direction
v a positive integer representing the number of iterations to perform

Details

Identifies the centres of clusters based on a convergent form of Choi and Hall’s data sharpening method. This function was originally built for identifying clusters in space-time where space is the x-y plane and time is the z-axis.

Value

Returns a (number of data points x 3) data frame containing the sharpened points x.sharp, y.sharp and z.sharp, respectively.

Author(s)

Douglas G. Woolford, W. John Braun

References

See Also

sharp3dB
Examples

```r
x <- 1:200
y <- c(rnorm(50, -1, 1), rnorm(50, 2, 2), rnorm(100, 0, .5))
z <- c(sample(1:50, 50), sample(26:75, 50), sample(51:150, 100))
data.sharp5 <- sharp3d(x, y, z, 5, 10, 5)
data.sharp10 <- sharp3d(x, y, z, 5, 10, 10)

# original data:
dataPlot <- scatterplot3d(x, y, z)
# sharpened data after 5 iterations:
dataPlot$points3d(data.sharp5$x.sharp, data.sharp5$y.sharp, data.sharp5$z.sharp, col=2, pch=19)
# sharpened data after 10 iterations:
dataPlot$points3d(data.sharp10$x.sharp, data.sharp10$y.sharp, data.sharp10$z.sharp, col=4, pch=19)
```

sharp3dB

Identify Cluster Centres for 3-dimensional Data via Data Sharpening

Description

Identifies the centres of clusters for 3-dimensional data using a convergent form of Choi and Hall’s (1999) data sharpening method. For use when the data is such that the z coordinates are in increasing order.

Usage

```r
sharp3dB(x, y, z, hspace = 1, htime = 1, v = 1)
```

Arguments

- `x`: the x coordinates of the data
- `y`: the y coordinates of the data
- `z`: the z coordinates of the data, in increasing order
- `hspace`: the bandwidth for sharpening in the direction of the x-y plane
- `htime`: the bandwidth for sharpening in the z direction
- `v`: a positive integer representing the number of iterations to perform

Details

Identifies the centres of clusters based on a convergent form of Choi and Hall’s data sharpening method. This function was originally built for identifying clusters in space-time where space is the x-y plane and time is the z-axis. Provided the z-data is in increasing order, this function is significantly faster than `sharp3d()`.

Value

Returns a (number of data points x 3) data frame containing the sharpened points `x.sharp`, `y.sharp` and `z.sharp`, respectively.
sharpen

Author(s)
Douglas G. Woolford, W. John Braun

References
Woolford, D. G. and Braun, W. J. (2004) Exploring lightning and fire ignition data as point pro-
Choi, E. and Hall, P. (1999) Data sharpening as a prelude to density estimation. Biometrika 86,
941-947.

See Also
sharp3d

sharpen
Penalized Data Sharpening Operator for Local Polynomial Regression

Description
Data perturbation operator which moves responses a minimal amount subject to a given penalty.

Usage
sharpen(x, y, lambda, B)

Arguments
x numeric vector of predictor observations
y numeric vector of observed responses
lambda numeric penalty constant
B numeric matrix, based on penalty

Value
a numeric vector containing the sharpened responses

Author(s)
W.J. Braun
Index

*Topic **cluster**
 sharp2d, 7
 sharp3d, 9
 sharp3dB, 10

*Topic **datasets**
 d, 2

*Topic **models**
 lambda, 2
 MISE, 3
 numericalDerivative, 3
 penlocreg, 4
 pllr, 5
 SecondDerivativePenalty, 6
 sharp1d, 6
 sharpen, 11

d, 2

lambda, 2

MISE, 3

numericalDerivative, 3

penlocreg, 4
pllr, 5

SecondDerivativePenalty, 6
sharp1d, 6
sharp2d, 7
sharp3d, 9
sharp3dB, 10
sharpen, 11