Package ‘Bolstad’

October 9, 2018

Version 0.2-40
Date 2018-10-09
Title Functions for Elementary Bayesian Inference
License GPL (>= 2)
LazyData true
Depends R (>= 3.2.0)
Imports mvtnorm
RoxygenNote 6.1.0
Encoding UTF-8
NeedsCompilation no
Author James Curran [aut, cre]
Maintainer James Curran <j.curran@auckland.ac.nz>
Repository CRAN
Date/Publication 2018-10-09 04:10:03 UTC

R topics documented:

Bolstad-package .. 2
as.data.frame.Bolstad ... 3
bayes.lin.reg .. 3
bayes.lm ... 5
bayes.t.test ... 8
bears .. 11
binobp .. 12
binodp .. 13
binogcp ... 15
binomixp ... 16
cdf .. 18
createPrior .. 19
Description

A set of R functions and data sets for the book Introduction to Bayesian Statistics, Bolstad, W.M. (2007), John Wiley & Sons ISBN 0-471-27020-2. Most of the package functions replicate the Minitab macros that are provided with the book. Some additional functions are provided to simplify inference about the posterior distribution of the parameters of interest.

Details

- **Package**: Bolstad
- **Type**: Package
- **Version**: 0.2-26
- **Date**: 2015-05-01
- **License**: GPL 2
Author(s)

James Curran Maintainer: James Curran <j.curran@auckland.ac.nz> ~~ The author and/or maintainer of the package ~~

References

Description

as.data.frame.Bolstad

Usage

S3 method for class 'Bolstad'
as.data.frame(x, ...)

Arguments

x an object of class Bolstad

..., any extra arguments needed.

Description

This function is used to find the posterior distribution of the simple linear regression slope variable β when we have a random sample of ordered pairs (x_i, y_i) from the simple linear regression model:

$$ y_i = \alpha + \beta x_i + \epsilon_i $$

where the observation errors are, ϵ_i, independent $\text{normal}(0, \sigma^2)$ with known variance.
Usage

`bayes.lin.reg(y, x, slope.prior = c("flat", "normal"),
 intcpt.prior = c("flat", "normal"), mb0 = 0, sb0 = 0, ma0 = 0,
 sa0 = 0, sigma = NULL, alpha = 0.05, plot.data = FALSE,
 pred.x = NULL)`

Arguments

- `y` the vector of responses.
- `x` the value of the explanatory variable associated with each response.
- `slope.prior` use a “flat” prior or a “normal” prior. for β
- `intcpt.prior` use a “flat” prior or a “normal” prior. for α \bar{x}
- `mb0` the prior mean of the simple linear regression slope variable β. This argument is ignored for a flat prior.
- `sb0` the prior std. deviation of the simple linear regression slope variable β - must be greater than zero. This argument is ignored for a flat prior.
- `ma0` the prior mean of the simple linear regression intercept variable α \bar{x}. This argument is ignored for a flat prior.
- `sa0` the prior std. deviation of the simple linear regression variable α \bar{x} - must be greater than zero. This argument is ignored for a flat prior.
- `sigma` the value of the std. deviation of the residuals. By default, this is assumed to be unknown and the sample value is used instead. This affects the prediction intervals.
- `alpha` controls the width of the credible interval.
- `plot.data` if true the data are plotted, and the posterior regression line superimposed on the data.
- `pred.x` a vector of x values for which the predicted y values are obtained and the std. errors of prediction

Value

A list will be returned with the following components:

- `post.coef` the posterior mean of the intercept and the slope
- `post.coef` the posterior standard deviation of the intercept the slope
- `pred.x` the vector of values for which predictions have been requested. If pred.x is NULL then this is not returned
- `pred.y` the vector predicted values corresponding to pred.x. If pred.x is NULL then this is not returned
- `pred.se` The standard errors of the predicted values in pred.y. If pred.x is NULL then this is not returned
bayes.lm

Examples

generate some data from a known model, where the true value of the
intercept alpha is 2, the true value of the slope beta is 3, and the
errors come from a normal(0,1) distribution
x = rnorm(50)
y = 22+3*x+rnorm(50)

use the function with a flat prior for the slope beta and a
flat prior for the intercept, alpha_xbar.
bayes.lin.reg(y,x)

use the function with a normal(0,3) prior for the slope beta and a
normal(30,10) prior for the intercept, alpha_xbar.
bayes.lin.reg(y,x,"n","n",0,3,30,10)

use the same data but plot it and the credible interval
bayes.lin.reg(y,x,"n","n",0,3,30,10, plot.data = TRUE)

The heart rate vs. O2 uptake example 14.1
O2 = c(0.47,0.75,0.83,0.98,1.18,1.29,1.40,1.60,1.75,1.90,2.23)
HR = c(94,96,94,95,104,106,108,113,115,121,131)
plot(HR,O2,xlab="Heart Rate",ylab="Oxygen uptake (Percent)"

bayes.lin.reg(O2,HR,"n","f",0,1,sigma=0.13)

Repeat the example but obtain predictions for HR = 100 and 110
bayes.lin.reg(O2,HR,"n","f",0,1,sigma=0.13,pred.x=c(100,110))

bayes.lm

Bayesian inference for multiple linear regression

Description

bayes.lm is used to fit linear models in the Bayesian paradigm. It can be used to carry out regression, single stratum analysis of variance and analysis of covariance (although these are not tested). This documentation is shamelessly adapted from the lm documentation.

Usage

bayes.lm(formula, data, subset, na.action, model = TRUE, x = FALSE, y = FALSE, center = TRUE, prior = NULL, sigma = FALSE)
Arguments

formula
an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under ‘Details’.

data
an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `bayes.lm` is called.

subset
an optional vector specifying a subset of observations to be used in the fitting process.

na.action
a function which indicates what should happen when the data contain NAs. The default is set by the `na.action` setting of options, and is `link[stats](na.fail)` if that is unset. The ‘factory-fresh’ default is `na.omit`. Another possible value is `na.fail`, no action. Value `na.exclude` can be useful.

model, x, y
logicals. If TRUE the corresponding components of the fit (the model frame, the model matrix, the response) are returned. β. This argument is ignored for a flat prior.

center
logical or numeric. If TRUE then the covariates will be centered on their means to make them orthogonal to the intercept. This probably makes no sense for models with factors, and if the argument is numeric then it contains a vector of covariate indices to be centered (not implemented yet).

prior
A list containing b0 (A vector of prior coefficients) and V0 (A prior covariance matrix)

sigma
the population standard deviation of the errors. If FALSE then this is estimated from the residual sum of squares from the ML fit.

Details

Models for `bayes.lm` are specified symbolically. A typical model has the form `response ~ terms` where `response` is the (numeric) response vector and `terms` is a series of terms which specifies a linear predictor for `response`. A terms specification of the form `first + second` indicates all the terms in `first` together with all the terms in `second` with duplicates removed. A specification of the form `first:second` indicates the set of terms obtained by taking the interactions of all terms in `first` with all terms in `second`. The specification `first*second` indicates the cross of `first` and `second`. This is the same as `first + second + first:second`.

See `model.matrix` for some further details. The terms in the formula will be re-ordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a `terms` object as the formula (see `aov` and `demo(glm.vr)` for an example).

A formula has an implied intercept term. To remove this use either `y ~ x - 1` or `y ~ 0 + x`. See `formula` for more details of allowed formulae.

`bayes.lm` calls the lower level function `lm.fit` to get the maximum likelihood estimates see below, for the actual numerical computations. For programming only, you may consider doing likewise.

`subset` is evaluated in the same way as variables in `formula`, that is first in `data` and then in the environment of `formula`.
bayes.lm

Value

bayes.lm returns an object of class Bolstad. The summary function is used to obtain and print a summary of the results much like the usual summary from a linear regression using lm. The generic accessor functions coef, fitted.values and residuals extract various useful features of the value returned by bayes.lm. Note that the residuals are computed at the posterior mean values of the coefficients.

An object of class "Bolstad" from this function is a list containing at least the following components:

- coefficients: a named vector of coefficients which contains the posterior mean
- post.var: a matrix containing the posterior variance-covariance matrix of the coefficients
- post.sd: sigma
- residuals: the residuals, that is response minus fitted values (computed at the posterior mean)
- fitted.values: the fitted mean values (computed at the posterior mean)
- df.residual: the residual degrees of freedom
- call: the matched call
- terms: the terms object used
- y: if requested, the response used
- x: if requested, the model matrix used
- model: if requested (the default), the model frame used
- na.action: (where relevant) information returned by model.frame on the special handling of NAs

Examples

data(bears)
bears = subset(bears, Obs.No==1)
bears = bears[,c(1,2,3,11,12)]
bears = bears[,c(7,1:6)]
bears$Sex = bears$Sex - 1
log.bears = data.frame(log.Weight = log(bears$Weight), bears[,2:7])

b0 = rep(0, 7)
V0 = diag(rep(1e6,7))

fit = bayes.lm(log(Weight)=Sex+Head.L+Head.W+Neck.G+Length+Chest.G, data = bears,
 prior = list(b0 = b0, V0 = V0))
summary(fit)
print(fit)

Dobson (1990) Page 9: Plant Weight Data:
ctl <- c(4.17,5.58,5.18,6.11,4.57,4.62,5.17,5.53,5.13,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)
bayes.t.test

Description
Performs one and two sample t-tests (in the Bayesian hypothesis testing framework) on vectors of data.

Usage
bayes.t.test(x, ...

Default S3 method:
bayes.t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, var.equal = TRUE, conf.level = 0.95, prior = c("jeffreys", "joint.conj"), m = NULL, n0 = NULL, sig.med = NULL, kappa = 1, sigmaPrior = "chisq", nIter = 10000, nBurn = 1000, ...)

S3 method for class 'formula'
bayes.t.test(formula, data, subset, na.action, ...)

Arguments

x a (non-empty) numeric vector of data values.
...
any additional arguments
y an optional (non-empty) numeric vector of data values.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
mu a number indicating the true value of the mean (or difference in means if you are performing a two sample test).
paired a logical indicating whether you want a paired t-test.
var.equal a logical variable indicating whether to treat the two variances as being equal. If TRUE (default) then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used. The unequal variance case is implemented using Gibbs sampling.
conf.level confidence level of interval.
prior

- a character string indicating which prior should be used for the means, must be one of "jeffreys" (default) for independent Jeffreys’ priors on the unknown mean(s) and variance(s), or "joint.conj" for a joint conjugate prior.

m

- if the joint conjugate prior is used then the user must specify a prior mean in the one-sample or paired case, or two prior means in the two-sample case. Note that if the hypothesis is that there is no difference between the means in the two-sample case, then the values of the prior means should usually be equal, and if so, then their actual values are irrelevant. This parameter is not used if the user chooses a Jeffreys’ prior.

n0

- if the joint conjugate prior is used then the user must specify a prior precision or precisions in the two sample case that represent our level of uncertainty about the true mean(s). This parameter is not used if the user chooses a Jeffreys’ prior.

sig.med

- if the joint conjugate prior is used then the user must specify the prior median for the unknown standard deviation. This parameter is not used if the user chooses a Jeffreys’ prior.

kappa

- if the joint conjugate prior is used then the user must specify the degrees of freedom for the inverse chi-squared distribution used for the unknown standard deviation. Usually the default of 1 will be sufficient. This parameter is not used if the user chooses a Jeffreys’ prior.

sigmaPrior

- If a two-sample t-test with unequal variances is desired then the user must choose between using an chi-squared prior ("chisq") or a gamma prior ("gamma") for the unknown population standard deviations. This parameter is only used if var.equal is set to FALSE.

nIter

- Gibbs sampling is used when a two-sample t-test with unequal variances is desired. This parameter controls the sample size from the posterior distribution.

nBurn

- Gibbs sampling is used when a two-sample t-test with unequal variances is desired. This parameter controls the number of iterations used to burn in the chains before the procedure starts sampling in order to reduce correlation with the starting values.

formula

- a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data values and rhs a factor with two levels giving the corresponding groups.

data

- an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

- currently ignored.

na.action

- currently ignored.

Value

- A list with class "htest" containing the following components:

 statistic
 - the value of the t-statistic.

 parameter
 - the degrees of freedom for the t-statistic.

 p.value
 - the p-value for the test.
conf.int
a confidence interval for the mean appropriate to the specified alternative hypothesis.
estimate
the estimated mean or difference in means depending on whether it was a one-sample test or a two-sample test.
null.value
the specified hypothesized value of the mean or mean difference depending on whether it was a one-sample test or a two-sample test.
alternative
a character string describing the alternative hypothesis.
method
a character string indicating what type of t-test was performed.
data.name
a character string giving the name(s) of the data.
result
an object of class Bolstad

Methods (by class)

- default: Bayesian t-test
- formula: Bayesian t-test

Author(s)

R Core with Bayesian internals added by James Curran

Examples

bayes.t.test(1:10, y = c(7:20)) # P = .3691e-01

Same example but with using the joint conjugate prior
We set the prior means equal (and it doesn't matter what the value is)
the prior precision is 0.01, which is a prior standard deviation of 10
we're saying the true difference of the means is between [-25.7, 25.7]
with probability equal to 0.99. The median value for the prior on sigma is 2
and we're using a scaled inverse chi-squared prior with 1 degree of freedom
bayes.t.test(1:10, y = c(7:20), var.equal = TRUE, prior = "joint.conj",
m = c(0,0), n0 = rep(0.01, 2), sig.med = 2)

##' Same example but with a large outlier. Note the assumption of equal variances isn't sensible
bayes.t.test(1:10, y = c(7:20, 200)) # P = .1979 -- NOT significant anymore

Classical example: Student's sleep data
plot(extra ~ group, data = sleep)

Traditional interface
with(sleep, bayes.t.test(extra[group == 1], extra[group == 2]))

Formula interface
bayes.t.test(extra ~ group, data = sleep)
Description

Body measurements for 143 wild bears.

Format

A data frame with 143 observations on the following 12 variables.

- ID. Identification number
- Age. Bear’s age, in months. Note, wild bears are always born in January, so an expert can estimate the bear’s age without directly asking it how old it is.
- Month. Month when the measurement was made. 1 = Jan., 12 = Dec. Since bears hibernate in the winter, their body shape probably depends on the season.
- Sex. 1 = male 2 = female
- Head.L. Length of the head, in inches
- Head.W. Width of the head, in inches
- Neck.G. Girth (distance around) the neck, in inches
- Length. Body length, in inches
- Chest.G. Girth (distance around) the chest, in inches
- Weight. Weight of the bear, in pounds
- Obs.No. Observation number for this bear. For example, the bear with ID = 41 (Bertha) was measured on four occasions, in the months coded 7, 8, 11, and 5. The value of Obs.No goes from 1 to 4 for these observations.
- Name. The names of the bears given to them by the researchers

Details

Wild bears were anesthetized, and their bodies were measured and weighed. One goal of the study was to make a table (or perhaps a set of tables) for hunters, so they could estimate the weight of a bear based on other measurements. This would be used because in the forest it is easier to measure the length of a bear, for example, than it is to weigh it.

Source

This data is in the example data set Bears.MTW distributed with Minitab

References

This data set was supplied by Gary Alt. Entertaining references are in Reader’s Digest April, 1979, and Sports Afield September, 1981.
Examples

```r
data(bears)
boxplot(Weight~Sex, data = bears)
```

binobp

Binomial sampling with a beta prior

Description

Evaluates and plots the posterior density for π, the probability of a success in a Bernoulli trial, with binomial sampling and a continuous $beta(a, b)$ prior.

Usage

```r
binobp(x, n, a = 1, b = 1, pi = seq(0, 1, by = 0.001), plot = TRUE)
```

Arguments

- `x` the number of observed successes in the binomial experiment.
- `n` the number of trials in the binomial experiment.
- `a` parameter for the beta prior - must be greater than zero
- `b` parameter for the beta prior - must be greater than zero
- `pi` A range of values for the prior to be calculated over.
- `plot` if TRUE then a plot showing the prior and the posterior will be produced.

Value

An object of class 'Bolstad' is returned. This is a list with the following components:

- `prior` the prior density of π, i.e. the $beta(a, b)$ density
- `likelihood` the likelihood of x given π and n, i.e. the $binomial(n, \pi)$ density
- `posterior` the posterior density of π given x and n - i.e. the $beta(a+x, b+n-x)$ density
- `pi` the values of π for which the posterior density was evaluated
- `mean` the posterior mean
- `var` the posterior variance
- `sd` the posterior std. deviation
- `quantiles` a set of quantiles from the posterior
- `cdf` a cumulative distribution function for the posterior
- `quantileFun` a quantile function for the posterior
See Also

binodp binogcp

Examples

simplest call with 6 successes observed in 8 trials and a beta(1,1) uniform prior
```
binobp(6,8)
```

6 successes observed in 8 trials and a non-uniform beta(0.5,6) prior
```
binobp(6,8,0.5,6)
```

4 successes observed in 12 trials with a non uniform beta(3,3) prior
```
# plot the stored prior, likelihood and posterior
results = binobp(4, 12, 3, 3)
decomp(results)
```

binodp

Binomial sampling with a discrete prior

Description

Evaluates and plots the posterior density for π, the probability of a success in a Bernoulli trial, with binomial sampling and a discrete prior on π

Usage

```
binodp(x, n, pi = NULL, pi.prior = NULL, n.pi = 10, plot = TRUE, suppressOutput = FALSE)
```

Arguments

- `x` the number of observed successes in the binomial experiment.
- `n` the number of trials in the binomial experiment.
- `pi` a vector of possibilities for the probability of success in a single trial. if `pi` is `NULL` then a discrete uniform prior for π will be used.
- `pi.prior` the associated prior probability mass.
- `n.pi` the number of possible π values in the prior
- `plot` if `TRUE` then a plot showing the prior and the posterior will be produced
- `suppressOutput` if `TRUE` then none of the output is printed to console
Value

A list will be returned with the following components:

- **pi**: the vector of possible \(\pi \) values used in the prior
- **pi.prior**: the associated probability mass for the values in \(\pi \)
- **likelihood**: the scaled likelihood function for \(\pi \) given \(x \) and \(n \)
- **posterior**: the posterior probability of \(\pi \) given \(x \) and \(n \)
- **f.cond**: the conditional distribution of \(x \) given \(\pi \) and \(n \)
- **f.joint**: the joint distribution of \(x \) and \(\pi \) given \(n \)
- **f.marg**: the marginal distribution of \(x \)

See Also

- `binobp` `binogcp`

Examples

```r
## simplest call with 6 successes observed in 8 trials and a uniform prior
binodp(6, 8)

## same as previous example but with more possibilities for pi
binodp(6, 8, n.pi = 100)

## 6 successes, 8 trials and a non-uniform discrete prior
pi = seq(0, 1, by = 0.01)
pi.prior = runif(101)
pi.prior = sort(pi.prior / sum(pi.prior))
binodp(6, 8, pi, pi.prior)

## 5 successes, 6 trials, non-uniform prior
pi = c(0.3, 0.4, 0.5)
pi.prior = c(0.2, 0.3, 0.5)
results = binodp(5, 6, pi, pi.prior)

## plot the results from the previous example using a side-by-side barplot
results.matrix = rbind(results$pi.prior, results$posterior)
colnames(results.matrix) = pi
barplot(results.matrix, col = c("red", "blue"), beside = TRUE,
       xlab = expression(pi), ylab=expression(Probability(pi)))
box()
legend("topleft", bty = "n", cex = 0.7,
       legend = c("Prior", "Posterior"), fill = c("red", "blue"))
```
binogcp

Description

Evaluates and plots the posterior density for π, the probability of a success in a Bernoulli trial, with binomial sampling and a general continuous prior on π.

Usage

```r
binogcp(x, n, density = c("uniform", "beta", "exp", "normal", "user"),
       params = c(0, 1), n.pi = 1000, pi = NULL, pi.prior = NULL,
       plot = TRUE)
```

Arguments

- `x`: the number of observed successes in the binomial experiment.
- `n`: the number of trials in the binomial experiment.
- `density`: may be one of "beta", "exp", "normal", "student", "uniform" or "user".
- `params`: if density is one of the parameteric forms then then a vector of parameters must be supplied. beta: a, b exp: rate normal: mean, sd uniform: min, max
- `n.pi`: the number of possible π values in the prior.
- `pi`: a vector of possibilities for the probability of success in a single trial. This must be set if density = "user".
- `pi.prior`: the associated prior probability mass. This must be set if density = "user".
- `plot`: if TRUE then a plot showing the prior and the posterior will be produced.

Value

A list will be returned with the following components:

- `likelihood`: the scaled likelihood function for π given x and n.
- `posterior`: the posterior probability of π given x and n.
- `pi`: the vector of possible π values used in the prior.
- `pi.prior`: the associated probability mass for the values in π.

See Also

`binobp`, `binodp`
Examples

```r
## simplest call with 6 successes observed in 8 trials and a continuous
## uniform prior
binogcp(6, 8)

## 6 successes, 8 trials and a Beta(2, 2) prior
binogcp(6, 8, density = "beta", params = c(2, 2))

## 5 successes, 10 trials and a N(0.5, 0.25) prior
binogcp(5, 10, density = "normal", params = c(0.5, 0.25))

## 4 successes, 12 trials with a user specified triangular continuous prior
pi = seq(0, 1, by = 0.001)
pi.prior = rep(0, length(pi))
priorFun = createPrior(x = c(0, 0.5, 1), wt = c(0, 2, 0))
pi.prior = priorFun(pi)
results = binogcp(4, 12, "user", pi = pi, pi.prior = pi.prior)

## find the posterior CDF using the previous example and Simpson's rule
myCdf = cdf(results)
plot(myCdf, type = "l", xlab = expression(pi[0]),
     ylab = expression(Pr(pi <= pi[0])))

## use the quantile function to find the 95% credible region.
qtls = quantile(results, probs = c(0.025, 0.975))
cat(paste("Approximate 95% credible interval : [" ",
     round(qtls[1], 4), " ", round(qtls[4], "\n", sep = "")")

## find the posterior mean, variance and std. deviation
## using the output from the previous example
post.mean = mean(results)
post.var = var(results)
post.sd = sd(results)

# calculate an approximate 95% credible region using the posterior mean and
# std. deviation
lb = post.mean - qnorm(0.975) * post.sd
ub = post.mean + qnorm(0.975) * post.sd
cat(paste("Approximate 95% credible interval : [" ",
     round(lb, 4), " ", round(ub, 4), "\n", sep = "")")
```

binomixp
Binomial sampling with a beta mixture prior

Description

Evaluates and plots the posterior density for \(\pi \), the probability of a success in a Bernoulli trial, with binomial sampling when the prior density for \(\pi \) is a mixture of two beta distributions, \(\text{beta}(a_0, b_0) \)
and \(\beta(a_1, b_1) \).

Usage

\[
\text{binomixp}(x, n, \alpha_0 = c(1, 1), \alpha_1 = c(1, 1), p = 0.5, \\
\text{plot} = \text{TRUE})
\]

Arguments

- \(x \) the number of observed successes in the binomial experiment.
- \(n \) the number of trials in the binomial experiment.
- \(\alpha_0 \) a vector of length two containing the parameters, \(a_0 \) and \(b_0 \), for the first component beta prior - must be greater than zero. By default the elements of \(\alpha_0 \) are set to 1.
- \(\alpha_1 \) a vector of length two containing the parameters, \(a_1 \) and \(b_1 \), for the second component beta prior - must be greater than zero. By default the elements of \(\alpha_1 \) are set to 1.
- \(p \) The prior mixing proportion for the two component beta priors. That is the prior is \(p \cdot \text{beta}(a_0, b_0) + (1-p) \cdot \text{beta}(a_1, b_1) \). \(p \) is set to 0.5 by default.
- \(\text{plot} \) if TRUE then a plot showing the prior and the posterior will be produced.

Value

A list will be returned with the following components:

- \(\pi \) the values of \(\pi \) for which the posterior density was evaluated.
- \(\text{posterior} \) the posterior density of \(\pi \) given \(n \) and \(x \).
- \(\text{likelihood} \) the likelihood function for \(\pi \) given \(x \) and \(n \), i.e. the binomial \((n, \pi) \) density.
- \(\text{prior} \) the prior density of \(\pi \) density.

See Also

\text{binodp} \hspace{1em} \text{binogcp} \hspace{1em} \text{normmixp}

Examples

```r
## simplest call with 6 successes observed in 8 trials and a 50:50 mix of two beta(1,1) uniform priors
binomixp(6, 8)

## 6 successes observed in 8 trials and a 20:80 mix of a non-uniform beta(0.5,6) prior and a uniform beta(1,1) prior
binomixp(6, 8, alpha0=c(0.5,6), alpha1=c(1,1), p=0.2)

## 4 successes observed in 12 trials with a 90:10 non uniform beta(3,3) prior
## and a non uniform beta(4,12).
## Plot the stored prior, likelihood and posterior
results = binomixp(4, 12, c(3, 3), c(4, 12), 0.9)$mix
```
par(mfrow = c(3,1))
y.lims = c(0, 1.1 * max(results$posterior, results$prior))

plot(results$pi, results$prior, ylim = y.lims, type = 'l',
 xlab = expression(pi), ylab = 'Density', main = 'Prior')
polygon(results$pi, results$prior, col = 'red')

plot(results$pi, results$likelihood, type = 'l',
 xlab = expression(pi), ylab = 'Density', main = 'Likelihood')
polygon(results$pi, results$likelihood, col = 'green')

plot(results$pi, results$posterior, ylim = y.lims, type = 'l',
 xlab = expression(pi), ylab = 'Density', main = 'Posterior')
polygon(results$pi, results$posterior, col = 'blue')

cdf

Cumulative distribution function generic

Description
This function returns the cumulative distribution function (cdf) of the posterior distribution of the parameter interest over the range of values for which the posterior is specified.

Usage
cdf(x, ...)

S3 method for class 'Bolstad'
cdf(x, ...)

Arguments
- **x**: An object for which we want to compute the cdf
- **...**: Any other parameters. Not currently used.

Value
either the exact cdf of the posterior if a conjugate prior has been used, or a a stats::splinefun
which will compute the lower tail probability of the parameter for any valid input.

Methods (by class)
- **Bolstad**: Cumulative distribution function for posterior density
createPrior

Author(s)
James Curran

createPrior Create prior generic

Description
Create prior generic

Usage
createPrior(x, ...)

Arguments
x a vector of x values at which the prior is to be specified (the support of the prior).
... optional exta arguments. Not currently used.

Value
a linear interpolation function where the weights have been scaled so the function (numerically) integrates to 1.

createPrior.default Create prior default method

Description
Create prior default method

Usage
Default S3 method:
createPrior(x, wt, ...)

Arguments
x a vector of x values at which the prior is to be specified (the support of the prior). This should contain unique values in ascending order. The function will sort values if x is unsorted with a warning, and will halt if x contains any duplicates or negative lag 1 differences.
wt a vector of weights corresponding to the weight of the prior at the given x values.
... optional exta arguments. Not currently used.
Value

a linear interpolation function where the weights have been scaled so the function (numerically) integrates to 1.

decomp

Plot the prior, likelihood, and posterior on the same plot.

Description

This function takes any object of class Bolstad and plots the prior, likelihood and posterior on the same plot. The aim is to show the influence of the prior, and the likelihood on the posterior.

Usage

```r
decomp(x, ...)
```

Arguments

- `x`: an object of class Bolstad.
- `...`: any other arguments to be passed to the `plot` function.

Note

Note that `xlab`, `ylab`, `main`, `axes`, `xlim`, `ylim` and `type` are all used in the function so specifying them is unlikely to have any effect.

Author(s)

James Curran

Examples

```r
# an example with a binomial sampling situation
results = binobp(4, 12, 3, 3, plot = FALSE)
decomp(results)

# an example with normal data
y = c(2.99, 5.56, 2.83, 3.47)
results = normnp(y, 3, 2, 1, plot = FALSE)
decomp(results)
```
<table>
<thead>
<tr>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interquartile Range generic</td>
</tr>
</tbody>
</table>

Description

Compute the interquartile range.

Usage

`IQR(x, ...)`

Arguments

- `x` an object.
- `...` any additional arguments. These are primarily used in `IQR.default` which calls `stats::IQR`.

Details

If `x` is an object of class `Bolstad` then the posterior IQR of the parameter of interest will be calculated.

Author(s)

James Curran

<table>
<thead>
<tr>
<th>lines.Bolstad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines method for Bolstad objects</td>
</tr>
</tbody>
</table>

Description

Allows simple addition of posterior distributions from other results to an existing plot.

Usage

```r
## S3 method for class 'Bolstad'
lines(x, ...)
```

Arguments

- `x` an object of class `Bolstad`.
- `...` any additional parameters to be passed to `graphics::lines`.

mean.Bolstad

Calculate the posterior mean

Description

Calculate the posterior mean of an object of class `Bolstad`. If the object has a member `mean` then it will return this value otherwise it will calculate \(\int_{-\infty}^{+\infty} \theta f(\theta|x).d\theta \) using linear interpolation to approximate the density function and numerical integration where \(\theta \) is the variable for which we want to do Bayesian inference, and \(x \) is the data.

Usage

```r
## S3 method for class 'Bolstad'
mean(x, ...)
```

Arguments

- `x` An object of class `Bolstad`
- `...` Any other arguments. This parameter is currently ignored but it could be useful in the future to deal with problematic data.

Value

The posterior mean of the variable of inference given the data.

Examples

```r
# The usefulness of this method is really highlighted when we have a general
# continuous prior. In this example we are interested in the posterior mean of
# an normal mean. Our prior is triangular over [-3, 3]
set.seed(123)
x = rnorm(20, -0.5, 1)
mu = seq(-3, 3, by = 0.001)
mu.prior = rep(0, length(mu))
mu.prior[mu <= 0] = 1 / 3 + mu[mu <= 0] / 9
mu.prior[mu > 0] = 1 / 3 - mu[mu > 0] / 9
results = normgcp(x, 1, density = "user", mu = mu, mu.prior = mu.prior)
mean(results)
```
moisture.df

Description

Moisture level at two stages in a food manufacturing process, in-process and final. These data are given in Example 14.1

Format

A data frame with 25 observations on the following 6 variables.

- batch. the batch number of the measurement
- proc.level. the in-process moisture level
- final.level. natural the final moisture level of the batch
- ls.fit the least squares fitted value of final.level given proc.level
- resididual. the least squares residual
- resididual.sq. the squared least squares residual

Examples

```r
data(moisture.df)
plot(final.level~proc.level, data = moisture.df)
```

mvnmvnp

Bayesian inference on a multivariate normal (MVN) mean with a multivariate normal (MVN) prior

Description

Evaluates posterior density for \(\mu \), the mean of a MVN distribution, with a MVN prior on \(\mu \)

Usage

```r
mvnmvnp(y, m0 = 0, V0 = 1, Sigma = NULL)
```
Arguments

\(y\) a vector of observations from a MVN distribution with unknown mean and known variance-covariance.

\(m\Phi\) the mean vector of the MVN prior, or a scalar constant so that the prior vector of length \(k\) with the same element repeated \(k\) times, e.g. \(m\Phi = \theta\).

\(V\Phi\) the variance-covariance matrix of the MVN prior, or the diagonal of the variance-covariance matrix of the MVN prior, or a scalar constant, say \(n_0\), so the prior is \(n_0 \times I_k\) where \(I_k\) is the \(k\) by \(k\) identity matrix.

\(\Sigma\) the known variance covariance matrix of the data. If this value is NULL, which it is by default, then the sample covariance is used. NOTE: if this is the case then the cdf and quantile functions should really be multivariate t, but they are not - in which case the results are only (approximately) valid for large samples.

Value

A list will be returned with the following components:

- mean the posterior mean of the MVN posterior distribution
- var the posterior variance-covariance matrix of the MVN posterior distribution
- cdf a function that will evaluation the posterior cdf at a given point. This function calls \texttt{mvtnorm}:\texttt{pmvnorm}.
- quantile a function that will find quantiles from the posterior given input probabilities. This function calls \texttt{mvtnorm}:\texttt{qmvnorm}.

Description

Bayesian inference on a normal mean with a discrete prior

Usage

\[
\text{normdp}(x, \text{sigma.x} = \text{NULL}, \text{mu} = \text{NULL}, \text{mu.prior} = \text{NULL}, \text{n.mu} = 50, \text{plot} = \text{TRUE})
\]

Arguments

- \(x\) a vector of observations from a normal distribution with unknown mean and known std. deviation.
- \(\text{sigma.x}\) the population std. deviation of the normal distribution
- \(\text{mu}\) a vector of possibilities for the probability of success in a single trial. If \(\text{mu}\) is \text{NULL} then a uniform prior is used.
- \(\text{mu.prior}\) the associated prior probability mass.
- \(\text{n.mu}\) the number of possible \(\mu\) values in the prior
- \(\text{plot}\) if \text{TRUE} then a plot showing the prior and the posterior will be produced.
normgcp

Bayesian inference on a normal mean with a general continuous prior

Description

Evaluates and plots the posterior density for μ, the mean of a normal distribution, with a general continuous prior on μ.

Value

A list will be returned with the following components:

- `mu`: the vector of possible μ values used in the prior
- `mu.prior`: the associated probability mass for the values in μ
- `likelihood`: the scaled likelihood function for μ given x and σ_x
- `posterior`: the posterior probability of μ given x and σ_x

See Also

`normnp` `normgcp`

Examples

```r
## generate a sample of 20 observations from a N(-0.5,1) population
x = rnorm(20, -0.5, 1)

## find the posterior density with a uniform prior on mu
normdp(x, 1)

## find the posterior density with a non-uniform prior on mu
mu = seq(-3, 3, by = 0.1)
mu.prior = runif(length(mu))
mu.prior = sort(mu.prior/sum(mu.prior))
normdp(x, 1, mu, mu.prior)

## Let mu have the discrete distribution with 5 possible values, 2, 2.5, 3, 3.5 and 4, and associated prior probability of 0.1, 0.2, 0.4, 0.2, 0.1 respectively. Find the posterior distribution after a drawing random sample of n = 5 observations from a N(mu, 1) distribution y = [1.52, 0.02, 3.35, 3.49, 1.82]
mu = seq(2, 4, by = 0.5)
mu.prior = c(0.1, 0.2, 0.4, 0.2, 0.1)
y = c(1.52, 0.02, 3.35, 3.49, 1.82)
normdp(y, 1, mu, mu.prior)
```
Usage

```r
normgcp(x, sigma.x = NULL, density = c("uniform", "normal", "flat", "user"),
  params = NULL, n.mu = 50, mu = NULL, mu.prior = NULL, plot = TRUE)
```

Arguments

- **x**: a vector of observations from a normal distribution with unknown mean and known std. deviation.
- **sigma.x**: the population std. deviation of the normal distribution.
- **density**: distributional form of the prior density can be one of: "normal", "uniform", or "user".
- **params**: if density = "normal" then params must contain at least a mean and possible a std. deviation. If a std. deviation is not specified then sigma.x will be used as the std. deviation of the prior. If density = "uniform" then params must contain a minimum and a maximum value for the uniform prior. If a maximum and minimum are not specified then a $U[0,1]$ prior is used.
- **n.mu**: the number of possible μ values in the prior.
- **mu**: a vector of possibilities for the probability of success in a single trial. Must be set if density="user".
- **mu.prior**: the associated prior density. Must be set if density="user".
- **plot**: if TRUE then a plot showing the prior and the posterior will be produced.

Value

A list will be returned with the following components:

- **likelihood**: the scaled likelihood function for μ given x and σ_x.
- **posterior**: the posterior probability of μ given x and σ.
- **mu**: the vector of possible μ values used in the prior.
- **mu.prior**: the associated probability mass for the values in μ.

See Also

- `normdp`
- `normnp`

Examples

```r
## generate a sample of 20 observations from a N(-0.5,1) population
x = rnorm(20, -0.5, 1)

## find the posterior density with a uniform U[-3,3] prior on mu
normgcp(x, 1, params = c(-3, 3))

## find the posterior density with a non-uniform prior on mu
mu = seq(-3, 3, by = 0.1)
```
mu.prior = rep(0, length(mu))
mu.prior[mu <= 0] = 1 / 3 + mu[mu <= 0] / 9
mu.prior[mu > 0] = 1 / 3 - mu[mu > 0] / 9
normgcp(x, 1, density = "user", mu = mu, mu.prior = mu.prior)

find the CDF for the previous example and plot it
Note the syntax for sintegral has changed
results = normgcp(x, 1, density = "user", mu = mu, mu.prior = mu.prior)
cdf = sintegral(mu, results$posterior, n.pts = length(mu))$cdf
plot(cdf, type = "l", xlab = expression(mu[0]),
ylab = expression(Pr(mu < mu[0])))

use the CDF for the previous example to find a 95% credible interval for mu. Thanks to John Wilkinson for this simplified code
lcb = cdf$x[with(cdf, which.max(x[y <= 0.025])))
ucb = cdf$x[with(cdf, which.max(x[y <= 0.975])))
cat(paste("Approximate 95% credible interval : [","round(lcb, 4),","round(ucb, 4),"]\n", sep = ""))

use the CDF from the previous example to find the posterior mean and std. deviation
dens = mu * results$posterior
post.mean = sintegral(mu, dens)$value
dens = (mu - post.mean)^2 * results$posterior
post.var = sintegral(mu, dens)$value
post.sd = sqrt(post.var)

use the mean and std. deviation from the previous example to find an approximate 95% credible interval
lb = post.mean - qnorm(0.975) * post.sd
ub = post.mean + qnorm(0.975) * post.sd
cat(paste("Approximate 95% credible interval : [","round(lb, 4),","round(ub, 4),"]\n", sep = ""))

repeat the last example but use the new summary functions for the posterior results = normgcp(x, 1, density = "user", mu = mu, mu.prior = mu.prior)

use the cdf function to get the cdf and plot it
postCDF = cdf(results) ## note this is a function
plot(results$mu, postCDF(results$mu), type = "l", xlab = expression(mu[0]),
ylab = expression(Pr(mu <= mu[0])))

use the quantile function to get a 95% credible interval
ci = quantile(results, c(0.025, 0.975))

use the mean and sd functions to get the posterior mean and standard deviation
postMean = mean(results)
postSD = sd(results)
Normmixp

postMean
postSD

use the mean and std. deviation from the previous example to find
an approximate 95% credible interval
ciApprox = postMean + c(-1,1) * qnorm(0.975) * postSD
ciApprox

normmixp
Bayesian inference on a normal mean with a mixture of normal priors

Description

Evaluates and plots the posterior density for μ, the mean of a normal distribution, with a mixture of normal priors on μ.

Usage

```r
normmixp(x, sigma.x, prior0, prior1, p = 0.5, mu = NULL,
         n.mu = max(100, length(mu)), plot = TRUE)
```

Arguments

- `x`: a vector of observations from a normal distribution with unknown mean and known std. deviation.
- `sigma.x`: the population std. deviation of the observations.
- `prior0`: the vector of length 2 which contains the means and standard deviation of your precise prior.
- `prior1`: the vector of length 2 which contains the means and standard deviation of your vague prior.
- `p`: the mixing proportion for the two component normal priors.
- `mu`: a vector of prior possibilities for the mean. If it is NULL, then a vector centered on the sample mean is created.
- `n.mu`: the number of possible μ values in the prior.
- `plot`: if TRUE then a plot showing the prior and the posterior will be produced.

Value

A list will be returned with the following components:

- `mu`: the vector of possible μ values used in the prior
- `prior`: the associated probability mass for the values in μ
- `likelihood`: the scaled likelihood function for μ given x and σ_x
- `posterior`: the posterior probability of μ given x and $\sigma_x`
normnp

Bayesian inference on a normal mean with a normal prior

Description

Evaluates and plots the posterior density for \(\mu \), the mean of a normal distribution, with a normal prior on \(\mu \).

Usage

```r
normnp(x, m.x = 0, s.x = 1, sigma.x = NULL, mu = NULL, n.mu = max(100, length(mu)), plot = TRUE)
```

Arguments

- `x`: a vector of observations from a normal distribution with unknown mean and known std. deviation.
- `m.x`: the mean of the normal prior.
- `s.x`: the standard deviation of the normal prior.
- `sigma.x`: the population std. deviation of the normal distribution. If this value is NULL, which it is by default, then a flat prior is used and `m.x` and `s.x` are ignored.
- `mu`: a vector of prior possibilities for the true mean. If this is `null`, then a set of values centered on the sample mean is used.
- `n.mu`: the number of possible \(\mu \) values in the prior.
- `plot`: if `TRUE` then a plot showing the prior and the posterior will be produced.

Examples

```r
## generate a sample of 20 observations from a N(-0.5, 1) population
x = rnorm(20, -0.5, 1)

## find the posterior density with a N(0, 1) prior on mu - a 50:50 mix of
## two N(0, 1) densities
normmixp(x, 1, c(0, 1), c(0, 1))

## find the posterior density with 50:50 mix of a N(0.5, 3) prior and a
## N(0, 1) prior on mu
normmixp(x, 1, c(0.5, 3), c(0, 1))

## Find the posterior density for mu, given a random sample of 4
## observations from N(mu, 1), y = [2.99, 5.56, 2.83, 3.47],
## and a 80:20 mix of a N(3, 2) prior and a N(0, 100) prior for mu
x = c(2.99, 5.56, 2.83, 3.47)
normmixp(x, 1, c(3, 2), c(0, 100), 0.8)
```
nvaricp

Bayesian inference for a normal standard deviation with a scaled inverse chi-squared distribution

Description

Evaluates and plots the posterior density for σ, the standard deviation of a Normal distribution where the mean μ is known

Usage

nvaricp(y, mu, S0, kappa, plot = TRUE, ...)

Value

A list will be returned with the following components:

- `mu`: the vector of possible μ values used in the prior
- `mu.prior`: the associated probability mass for the values in μ
- `likelihood`: the scaled likelihood function for μ given x and σ_x
- `posterior`: the posterior probability of μ given x and σ_x
- `mean`: the posterior mean
- `sd`: the posterior standard deviation
- `qtls`: a selection of quantiles from the posterior density

See Also

normdp, normgcp

Examples

```r
## generate a sample of 20 observations from a N(-0.5,1) population
x = rnorm(20,-0.5,1)

## find the posterior density with a N(0,1) prior on mu
normnp(x,sigma=1)

## find the posterior density with N(0.5,3) prior on mu
normnp(x,0.5,3,1)

## Find the posterior density for mu, given a random sample of 4
## observations from N(mu,sigma^2=1), y = [2.99, 5.56, 2.83, 3.47],
## and a N(3,sd=2)$ prior for mu
y = c(2.99,5.56,2.83,3.47)
normnp(y,3,1)
```
Arguments

- **y**: a random sample from a \(\text{normal}(\mu, \sigma^2)\) distribution.
- **mu**: the known population mean of the random sample.
- **S0**: the prior scaling factor.
- **kappa**: the degrees of freedom of the prior.
- **plot**: if TRUE then a plot showing the prior and the posterior will be produced.

... this allows the arguments **cred.int** (which is logical), and **alpha** (numerical between 0 and 1 exclusive) to be specified for compatibility with previous versions. A warning will be issued about these arguments being deprecated which is why there are no examples using them.

Value

A list will be returned with the following components:

- **sigma**: the values of \(\sigma\) for which the prior, likelihood and posterior have been calculated
- **prior**: the prior density for \(\sigma\)
- **likelihood**: the likelihood function for \(\sigma\) given \(y\)
- **posterior**: the posterior density of \(\mu\) given \(y\)
- **S1**: the posterior scaling constant
- **kappa1**: the posterior degrees of freedom

Examples

```r
## Suppose we have five observations from a normal(mu, sigma^2) distribution mu = 200 which are 206.4, 197.4, 212.7, 208.5.
y = c(206.4, 197.4, 212.7, 208.5, 203.4)

## We wish to choose a prior that has a median of 8. This happens when
## S0 = 29.11 and kappa = 1
nvaricp(y, 200, 29.11, 1)

## Same as the previous example but calculate a 95% credible interval for sigma. NOTE this method has changed
results = nvaricp(y, 200, 29.11, 1)
quantile(results, probs = c(0.025, 0.975))
```
Description

A unified plotting method for plotting the prior, likelihood and posterior from any of the analyses in the book

Usage

```r
## S3 method for class 'Bolstad'
plot(x, overlay = TRUE, which = c(1, 3),
     densCols = c("red", "green", "blue")[which], legendLoc = "topleft",
     scaleLike = FALSE, xlab = eval(expression(x$name)), ylab = "",
     main = "Shape of prior and posterior", ylim = c(0, max(cbind(x$prior,
                      x$likelihood, x$posterior)[, which]) * 1.1), cex = 0.7, ...)```

Arguments

- `x` A S3 object of class Bolstad
- `overlay` if FALSE then up to three plots will be drawn side-by-side
- `which` Control which of the prior = 1, likelihood = 2, and posterior = 3, are plots. This is set to prior and posterior by default to retain compatibility with the book
- `densCols` The colors of the lines for each of the prior, likelihood and posterior
- `legendLoc` The location of the legend, usually either "topright" or "topleft"
- `scaleLike` If TRUE, then the likelihood will be scaled to have approximately the same maximum value as the posterior
- `xlab` Label for x axis
- `ylab` Label for y axis
- `main` Title of plot
- `ylim` Vector giving y coordinate range
- `cex` Character expansion multiplier
- `...` Any remaining arguments are fed to the `plot` command

Details

The function provides a unified way of plotting the prior, likelihood and posterior from any of the functions in the library that return these quantities. It will produce an overlay of the lines by default, or separate panels if `overlay = FALSE`.

Author(s)

James Curran
Examples

```r
x = rnorm(20, -0.5, 1)
find the posterior density with a N(0,1) prior on mu
b = normnp(x, sigma=1)
plot(b)
plot(b, which = 1:3)
plot(b, overlay = FALSE, which = 1:3)
```

Description

Evaluates and plots the posterior density for \( \mu \), the mean rate of occurrence in a Poisson process and a discrete prior on \( \mu \).

Usage

```r
poisdp(y.obs, mu, mu.prior, plot = TRUE)
```

Arguments

- `y.obs`: a random sample from a Poisson distribution.
- `mu`: a vector of possibilities for the mean rate of occurrence of an event over a finite period of space or time.
- `mu.prior`: the associated prior probability mass.
- `plot`: if TRUE then a plot showing the prior and the posterior will be produced.

Value

A list will be returned with the following components:

- `likelihood`: the scaled likelihood function for \( \mu \) given \( y_{obs} \)
- `posterior`: the posterior probability of \( \mu \) given \( y_{obs} \)
- `mu`: the vector of possible \( \mu \) values used in the prior
- `mu.prior`: the associated probability mass for the values in \( \mu \)

See Also

`poisgamp` `poisgcp`
Examples

```r
simplest call with an observation of 4 and a uniform prior on the
values mu = 1, 2, 3
poisdp(4, 1:3, c(1, 1)/3)

Same as the previous example but a non-uniform discrete prior
mu = 1:3
mu.prior = c(0.3, 0.4, 0.3)
poisdp(4, mu = mu, mu.prior = mu.prior)

Same as the previous example but a non-uniform discrete prior
mu = seq(0.5, 9.5, by = 0.05)
mu.prior = runif(length(mu))
mu.prior = sort(mu.prior / sum(mu.prior))
poisdp(4, mu = mu, mu.prior = mu.prior)

A random sample of 50 observations from a Poisson distribution with
parameter mu = 3 and non-uniform prior
y.obs = rpois(50, 3)
mu = c(1:5)
mu.prior = c(0.1, 0.1, 0.05, 0.25, 0.5)
results = poisdp(y.obs, mu, mu.prior)

Same as the previous example but a non-uniform discrete prior
mu = seq(0.5, 9.5, by = 0.05)
mu.prior = runif(length(mu))
mu.prior = sort(mu.prior / sum(mu.prior))
y.obs = rpois(50, 3)
poisdp(y.obs, mu = mu, mu.prior = mu.prior)
```

**poisgamp**

Poisson sampling with a gamma prior

Description

Evaluates and plots the posterior density for $\mu$, the mean rate of occurrence in a Poisson process and a gamma prior on $\mu$

Usage

```r
poisgamp(y, shape, rate = 1, scale = 1/rate, alpha = 0.05,
plot = TRUE, suppressOutput = FALSE)
```
Arguments

- **y**: a random sample from a Poisson distribution.
- **shape**: the shape parameter of the *gamma* prior.
- **rate**: the rate parameter of the *gamma* prior. Note that the scale is 1/rate.
- **scale**: the scale parameter of the *gamma* prior.
- **alpha**: the width of the credible interval is controlled by the parameter alpha.
- **plot**: if TRUE then a plot showing the prior and the posterior will be produced.
- **suppressOutput**: if TRUE then none of the output is printed to console.

Value

An object of class 'Bolstad' is returned. This is a list with the following components:

- **prior**: the prior density assigned to \( \mu \).
- **likelihood**: the scaled likelihood function for \( \mu \) given \( y \).
- **posterior**: the posterior probability of \( \mu \) given \( y \).
- **shape**: the shape parameter for the *gamma* posterior.
- **rate**: the rate parameter for the *gamma* posterior.

See Also

- *poisdp*  *poisgcp*

Examples

```r
simplest call with an observation of 4 and a gamma(1, 1), i.e. an exponential prior on the
mu
poisgamp(4, 1, 1)

Same as the previous example but a gamma(10,) prior
poisgamp(4, 10, 1)

Same as the previous example but an improper gamma(1,) prior
poisgamp(4, 1, 0)

A random sample of 50 observations from a Poisson distribution with
parameter mu = 3 and gamma(6,3) prior
set.seed(123)
y = rpois(50,3)
poisgamp(y,6,3)

In this example we have a random sample from a Poisson distribution
with an unknown mean. We will use a gamma(6,3) prior to obtain the
posterior gamma distribution, and use the R function qgamma to get a
95% credible interval for mu
y = c(3,4,4,3,3,4,2,3,1,7)
results = poisgamp(y,6,3)
```
ci = qgamma(c(0.025, 0.975), results$shape, results$rate)
cat(paste("95% credible interval for mu: ["round(ci[1]), ", ", round(ci[2]), "]\n")

## In this example we have a random sample from a Poisson distribution
## with an unknown mean. We will use a gamma(6,3) prior to obtain the
## posterior gamma distribution, and use the R function qgamma to get a
## 95% credible interval for mu
y = c(3,4,4,3,3,4,2,3,1,7)
results = poisgamp(y, 6, 3)
ci = quantile(results, c(0.025, 0.975))
cat(paste("95% credible interval for mu: ["round(ci[1]), ", ", round(ci[2]), "]\n")

---

**poisgcp**

*Poisson sampling with a general continuous prior*

**Description**

Evaluates and plots the posterior density for $\mu$, the mean rate of occurrence of an event or objects, with Poisson sampling and a general continuous prior on $\mu$

**Usage**

```r
poisgcp(y, density = c("normal", "gamma", "user"), params = c(0, 1),
n.mu = 100, mu = NULL, mu.prior = NULL, print.sum.stat = FALSE,
alpha = 0.05, plot = TRUE, suppressOutput = FALSE)
```

**Arguments**

- **y**
  - A random sample of one or more observations from a Poisson distribution
- **density**
  - may be one of "gamma", "normal", or "user"
- **params**
  - if density is one of the parameteric forms then then a vector of parameters must be supplied. gamma: a0,b0 normal: mean,sd
- **n.mu**
  - the number of possible $\mu$ values in the prior. This number must be greater than or equal to 100. It is ignored when density="user".
- **mu**
  - either a vector of possibilities for the mean of a Poisson distribution, or a range (a vector of length 2) of values. This must be set if density = "user". If mu is a range, then n.mu will be used to decide how many points to discretise this range over.
- **mu.prior**
  - either a vector containing y values corresponding to the values in mu, or a function. This is used to specify the prior $f(\mu)$. So mu.prior can be a vector containing $f(\mu_i)$ for every $\mu_i$, or a function. This must be set if density == "user".
- **print.sum.stat**
  - if set to TRUE then the posterior mean, posterior variance, and a credible interval for the mean are printed. The width of the credible interval is controlled by the parameter alpha.
alpha  The width of the credible interval is controlled by the parameter alpha.
plot  if TRUE then a plot showing the prior and the posterior will be produced.
suppressOutput  if TRUE then none of the output is printed to console

Value

A list will be returned with the following components:

- mu  the vector of possible \( \mu \) values used in the prior
- mu.prior  the associated probability mass for the values in \( \mu \)
- likelihood  the scaled likelihood function for \( \mu \) given \( y \)
- posterior  the posterior probability of \( \mu \) given \( y \)

See Also

poisdp poisgamp

Examples

```r
Our data is random sample is 3, 4, 3, 0, 1. We will try a normal
prior with a mean of 2 and a standard deviation of 0.5.
y = c(3,4,3,0,1)
poisgcp(y, density = "normal", params = c(2,0.5))

The same data as above, but with a gamma(6,8) prior
y = c(3,4,3,0,1)
poisgcp(y, density = "gamma", params = c(6,8))

The same data as above, but a user specified continuous prior.
We will use print.sum.stat to get a 99% credible interval for mu.
y = c(3,4,3,0,1)
mu = seq(0.8,by=0.001)
mu.prior = c(seq(0,2,by=0.001),rep(2,1999),seq(2,0,by=-0.0005))/10
poisgcp(y,"user",mu=mu,mu.prior=mu.prior,print.sum.stat=TRUE,alpha=0.01)

find the posterior CDF using the results from the previous example
and Simpson's rule. Note that the syntax of sintegral has changed.
results = poisgcp(y,"user",mu=mu,mu.prior=mu.prior)
cdf = sintegral(mu,results$posterior,n.pts=length(mu))$cdf
plot(cdf,type="l",xlab=expression(mu[0]))

use the cdf to find the 95% credible region.
lcb = cdf$x[which(cdf,which.max(x[y<=0.025]]))]
ucb = cdf$x[which(cdf,which.max(x[y<=0.975]]))]
cat(paste("Approximate 95% credible interval : [",round(lcb,4)," ",round(ucb,4),"]\n",sep=""))

find the posterior mean, variance and std. deviation
using Simpson's rule and the output from the previous example
```
dists = mu*results$posterior # calculate mu*f(mu | x, n)
post.mean = sintegral(mu,dists)$value

dens = (mu-post.mean)^2*results$posterior
post.var = sintegral(mu,dists)$value
post.sd = sqrt(post.var)

# calculate an approximate 95% credible region using the posterior mean and
# std. deviation
lb = post.mean-qnorm(0.975)*post.sd
ub = post.mean+qnorm(0.975)*post.sd

cat(paste("Approximate 95% credible interval : [" ,round(lb,4), ","," ,round(ub,4),"]\n",sep=""))

# NOTE: All the examples given above can now be done trivially in this package

## find the posterior CDF using the results from the previous example
results = poisgcp(y,"user",mu=mu,mu.prior=mu.prior)
cdf = cdf(results)
curve(cdf,type=1,xlab=expression(mu[0]),
ylab=expression(Pr(mu<=mu[0])))

## use the quantile function to find the 95% credible region.
ci = quantile(results, c(0.025, 0.975))
cat(paste("Approximate 95% credible interval : [" ,round(ci[1],4), ","," ,round(ci[2],4),"]\n",sep=""))

## find the posterior mean, variance and std. deviation
## using the output from the previous example
post.mean = mean(results)
post.var = var(results)
post.sd = sd(results)

# calculate an approximate 95% credible region using the posterior mean and
# std. deviation

## Example 10.1 Diana's prior
## Firstly we need to write a function that replicates Diana's prior
f = function(mu){
  result = rep(0, length(mu))
  result[mu >=0 & mu <=2] = mu[mu >=0 & mu <=2]
  result[mu >2 & mu <=4] = 2
  result[mu >4 & mu <=8] = 4 - 0.5 * mu[mu >4 & mu <=8]

  ## we don't need to scale so the prior integrates to one,
  ## but it makes the results nicer to see
\begin{verbatim}
A = 2 + 4 + 4
result = result / A

return(result)
}

results = poisgcp(y, mu = c(0, 10), mu.prior = f)
\end{verbatim}

\section*{print.Bolstad}

Print method for objects of class Bolstad

\subsection*{Description}
This function provides a print summary method for the output of \texttt{bayes.lm}.

\subsection*{Usage}
\begin{verbatim}
## S3 method for class 'Bolstad'
print(x, digits = max(3L,getOption("digits") - 3L),
...)
\end{verbatim}

\subsection*{Arguments}
\begin{itemize}
\item \textbf{x} \hspace{1cm} an object of class Bolstad
\item \textbf{digits} \hspace{1cm} number of digits to print
\item \textbf{...} \hspace{1cm} any other arguments that are to be passed to print.default
\end{itemize}

\subsection*{Details}
if \texttt{x} has both class Bolstad and \texttt{lm} then a print method similar to \texttt{print.lm} is called, otherwise \texttt{print.default} is called

\subsection*{Author(s)}
James Curran

\subsection*{See Also}
\begin{itemize}
\item \texttt{bayes.lm}
\end{itemize}
print.sscsamp  Print method for objects of class sscsample

Description

This function provides a print summary method for the output of sscsample. The sscsample produces a large number of samples from a fixed population using either simple random, stratified, or cluster sampling. This function provides the means of each sample plus the number of observations from each ethnicity stratum in the sample.

Usage

```r
S3 method for class 'sscsamp'
print(x, ...)
```

Arguments

- `x` an object of class sscsamp produced by sscsample
- `...` any other arguments that are to be passed to `cat`

Author(s)

James Curran

See Also

- `sscsample`

quantile.Bolstad  Posterior quantiles

Description

Posterior quantiles

Usage

```r
S3 method for class 'Bolstad'
quantile(x, probs = seq(0, 1, 0.25), ...)
```

Arguments

- `x` an object of class Bolstad
- `probs` numeric vector of probabilities with values in [0, 1].
- `...`, any extra arguments needed.
Details
If x is of class Bolstad then this will find the quantiles of the posterior distribution using numerical integration and linear interpolation if necessary.

sd
Standard deviation generic

Description
Standard deviation generic

Usage
sd(x, ...)

Arguments
x an object.
... Any additional arguments to be passed to sd.

sd.Bolstad
Posterior standard deviation

Description
Posterior standard deviation

Usage
## S3 method for class 'Bolstad'
sd(x, ...)

Arguments
x an object of class Bolstad for which we want to compute the standard deviation.
... Any additional arguments to be passed to sd.
Calculate the posterior standard deviation of an object of class Bolstad. If the object has a member sd then it will return this value otherwise it will calculate the posterior standard deviation sd[θ|x] using linear interpolation to approximate the density function and numerical integration where θ is the variable for which we want to do Bayesian inference, and x is the data.

Author(s)
James M. Curran
Examples

```r
The usefulness of this method is really highlighted when we have a general
continuous prior. In this example we are interested in the posterior
standard deviation of an normal mean. Our prior is triangular over [-3, 3]
set.seed(123)
x = rnorm(20, -0.5, 1)

mu = seq(-3, 3, by = 0.001)

mu.prior = rep(0, length(mu))
mu.prior[mu <= 0] = 1 / 3 + mu[mu <= 0] / 9
mu.prior[mu > 0] = 1 / 3 - mu[mu > 0] / 9

results = normgcp(x, 1, density = "user", mu = mu, mu.prior = mu.prior, plot = FALSE)

sd(results)
```

---

`sintegral`  
Numerical integration using Simpson’s Rule

Description

Takes a vector of `x` values and a corresponding set of positive `f(x) = y` values, or a function, and evaluates the area under the curve:

\[ \int f(x) \, dx \]

Usage

`sintegral(x, fx, n.pts = max(256, length(x)))`

Arguments

- `x` a sequence of `x` values.
- `fx` the value of the function to be integrated at `x` or a function
- `n.pts` the number of points to be used in the integration. If `x` contains more than `n.pts` then `n.pts` will be set to `length(x)`

Value

A list containing two elements, `value` - the value of the integral, and `cdf` - a list containing elements `x` and `y` which give a numeric specification of the cdf.
Examples

```r
integrate the normal density from -3 to 3
x = seq(-3, 3, length = 100)
fX = dnorm(x)
estimate = sintegral(x,fX)$value
true.val = diff(pnorm(c(-3,3)))
abs.error = abs(estimate-true.val)
rel.pct.error = 100*abs(estimate-true.val)/true.val

cat(paste("Absolute error :",round(abs.error,7),"\n"))
cat(paste("Relative percentage error :",round(rel.pct.error,6)," percent\n"))

repeat the example above using dnorm as function
x = seq(-3, 3, length = 100)
estimate = sintegral(x,dnorm)$value
true.val = diff(pnorm(c(-3,3)))
abs.error = abs(estimate-true.val)
rel.pct.error = 100*abs(estimate-true.val)/true.val

cat(paste("Absolute error :",round(abs.error,7),"\n"))
cat(paste("Relative percentage error :",round(rel.pct.error,6)," percent\n"))

use the cdf

cdf = sintegral(x,dnorm)$cdf
plot(cdf, type = 'l', col = "black")
lines(x, pnorm(x), col = "red", lty = 2)

integrate the function x^2-1 over the range 1-2
x = seq(1,2,length = 100)
sintegral(x,function(x)(x^2-1))$value

compare to integrate
integrate(function(x)(x^2-1),1,2)
```

slug

## Slug data

### Description

Lengths and weights of 100 slugs from the species Limax maximus collected around Hamilton, New Zealand.

### Format

A data frame with 100 observations on the following 4 variables.

- length. length (mm) of the slug
• weight. weight (g) of the slug
• log.len. natural logarithm of the length
• log.wt. natural logarithm of the weight

References

Examples

data(slug)
plot(weight-length, data = slug)
plot(log.wt-log.len, data = slug)

data(sscsample)

Simple, Stratified and Cluster Sampling

Description
Samples from a fixed population using either simple random sampling, stratified sampling or cluster sampling.

Usage

sscsample(size, n.samples, sample.type = c("simple", "cluster", "stratified"), x = NULL, strata = NULL, cluster = NULL)

Arguments

size the desired size of the sample
n.samples the number of repeat samples to take
sample.type the sampling method. Can be one of "simple", "stratified", "cluster" or 1, 2, 3 where 1 corresponds to "simple", 2 to "stratified" and 3 to "cluster"
x a vector of measurements for each unit in the population. By default x is not used, and the builtin data set sscsample.data is used
strata a corresponding vector for each unit in the population indicating membership to a stratum
cluster a corresponding vector for each unit in the population indicating membership to a cluster
Value

A list will be returned with the following components:

- **samples**: a matrix with the number of rows equal to size and the number of columns equal to n.samples. Each column corresponds to a sample drawn from the population.
- **s.strata**: a matrix showing how many units from each stratum were included in the sample.
- **means**: a vector containing the mean of each sample drawn.

Author(s)


Examples

```r
Draw 200 samples of size 20 using simple random sampling
sscsample(20, 200)

Draw 200 samples of size 20 using simple random sampling and store the
results. Extract the means of all 200 samples, and the 50th sample
res = sscsample(20, 200)
res$means
res$samples[, 50]
```

Description

A simulated population made up of 100 individuals. The individuals come from three ethnic groups with population proportions of 40%, 40%, and 20%, respectively. There are twenty neighborhoods, and five individuals live in each one. Now, the income distribution may be different for the three ethnic groups. Also, individuals in the same neighborhood tend to be more similar than individuals in different neighborhoods.

Format

A data frame with 100 observations on the following 3 variables.

- **income**: Simulated income in $10,000
- **ethnicity**: A numerical vector indicating the ethnic group of the observation
- **neighborhood**: A numeric vector indicating the neighborhood of the observation
Examples

```r
data(sscsample.data)
plot(income~ethnicity, data = sscsample.data)
```

Summary.Bolstad  

**Summarizing Bayesian Multiple Linear Regression**

Description

summary method for output of `bayes.lm`.

Usage

```r
S3 method for class 'Bolstad'
summary(object, ...)
```

Arguments

- `object` an object of "Bolstad" that is the result of a call to `bayes.lm`
- `...` any further arguments to be passed to `print`

See Also

The function to fit the model `bayes.lm`
The function `coef` to extract the matrix of posterior means along with standard errors and t-statistics.

---

**var**  

**Variance generic**

Description

Variance generic

Usage

```r
var(x, ...)
```

Arguments

- `x` an object for which we want to compute the variance
- `...` Any additional arguments to be passed to `var`.
Description

Simulates completely randomized design and randomized block designs from a population of experimental units with underlying response values \( y \) and underlying other variable values \( x \) (possibly lurking).

Usage

\[
\text{xdesign}(x = \text{NULL}, y = \text{NULL}, \text{corr} = 0.8, \text{size} = 20, \\
\text{n.treatments} = 4, \text{n.rep} = 500)
\]

Arguments

- \( x \) a set of lurking values which are correlated with the response
- \( y \) a set of response values
- \( \text{corr} \) the correlation between the response and lurking variable
- \( \text{size} \) the size of the treatment groups
- \( \text{n.treatments} \) the number of treatments
- \( \text{n.rep} \) the number of Monte Carlo replicates

Value

If the output of xdesign is assigned to a variable, then a list is returned with the following components:

- \( \text{block.means} \) a vector of the means of the lurking variable from each replicate of the simulation stored by treatment number within replicate number
- \( \text{treat.means} \) a vector of the means of the response variable from each replicate of the simulation stored by treatment number within replicate number
- \( \text{ind} \) a vector containing the treatment group numbers. Note that there will be twice as many group numbers as there are treatments corresponding to the simulations done using a completely randomized design and the simulations done using a randomized block design

Examples

# Carry out simulations using the default parameters

xdesign()

# Carry out simulations using a simulated response with 5 treatments, 
# groups of size 25, and a correlation of -0.6 between the response
# and lurking variable

```
xdesign(corr = -0.6, size = 25, n.treatments = 5)
```
Index

*Topic datasets
bears, 11
moisture.df, 23
slug, 43
sscsample.data, 45

*Topic misc
bayes.lm.reg, 3
bayes.lm, 5
binobp, 12
binodp, 13
binogcp, 15
binomixp, 16
mvnmvnp, 23
normdp, 24
normgcp, 25
normmixp, 28
normnp, 29
nvaricp, 30
poisdp, 33
poisgamp, 34
poisgcp, 36
sintegral, 42
sscsample, 44
xdesign, 47

*Topic package
Bolstad-package, 2

*Topic plots
decomp, 20

*Topic plot
plot.Bolstad, 32

aov, 6
as.data.frame, 6
as.data.frame.Bolstad, 3

bayes.lm.reg, 3
bayes.lm, 5, 39, 46
bayes.t.test, 8
bears, 11
binobp, 12, 14, 15

binodp, 13, 15, 17
binogcp, 13, 14, 15, 17
binomixp, 16, 29
Bolstad (Bolstad-package), 2
Bolstad-package, 2
cdf, 18
coeff, 46
createPrior, 19
createPrior.default, 19
decomp, 20
formula, 6
IQR, 21
lines.Bolstad, 21
lm, 7
mean.Bolstad, 22
model.frame, 9
model.matrix, 6
moisture.df, 23
mvnmvnp, 23

na.action, 6
na.exclude, 6
na.omit, 6
normdp, 24, 26, 29, 30
normgcp, 25, 25, 29, 30
normmixp, 17, 28
normnp, 25, 26, 29
nvaricp, 30

plot.Bolstad, 32
poisdp, 33, 35, 37
poisgamp, 33, 34, 37
poisgcp, 33, 35, 36
print.Bolstad, 39
print.sscsamp, 40
quantile.Bolstad, 40
sd, 41
sd.Bolstad, 41
sintegral, 42
slug, 43
sscsample, 40, 44
sscsample.data, 45
summary.Bolstad, 46
terms, 7
var, 46
xdesign, 47